

Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division Atlantic City International Airport New Jersey 08405 Effects of Ultraviolet-C Germicidal Irradiation on Aircraft Cabin Interior Materials

April, 2023

Final report

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use.

This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: <u>actlibrary.tc.faa.gov</u> in Adobe Acrobat portable document format (PDF).

Technical Report Documentation Page

Form DOT F 1700.7 (8-72)	Reproduction of completed page authorized	
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
DOT/FAA/TC-23/5		
4. Title and Subtitle		5. Report Date
Effects of Ultraviolet-C Germicidal Irrad	iation on Aircraft Cabin Interior Materials	April 2023
		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Aswini Kona Ravi, Akhil Bhasin, Luis Daniel Cast	illo, Tanat Maichan, Luis Gomez, Gerardo Olivares	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
National Institute for Aviation Research		
Wichita State University		11. Contract or Grant No.
1845 Fairmount		
Wichita, KS 67260-0093		
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered Final Report
U.S. Department of Transportation		······································
Federal Aviation Administration		14. Sponsoring Agency Code
Office of Aviation Research		
Washington, DC 20591		
15. Supplementary Notes		
16. Abstract		
As a result of the coronavirus disease	2019 (COVID-19) public health emergency	aircraft owners and operators may find it
necessary to increase the frequency with	which they disinfect aircraft interiors. The d	isinfectant procedures included conventional
chemical liquid disinfectants and Ultravi	olet-C (UV-C) germicidal irradiation. In the	first two phases of this project, we evaluated
the effects of liquid chemical disinfectan	ts on materials used in aircraft seats and oth	er interior applications. In the third phase of
this project long term exposure to LWC	irrediction on various singraft schin interior r	notorials has been investigated. In this study
aight different motorials typically used in	aircraft interiors including costs	land Three UV C implication configurations
with peak emissions at 222 nm 253 4 nm	ancian interiors, including seals, were considered and 280 nm were selected. The test materia	ls were subjected to accelerated UV-C aging

with peak emissions at 222 nm, 253.4 nm, and 280 nm were selected. The test materials were subjected to accelerated UV-C aging tests at multiple cumulative dosage configurations, representing a single daily exposure over a time period of one, four, and eight years. Post the UV-C exposure, the materials were evaluated for change in weight, color, flammability performance, and mechanical properties.

17. Key Words	18. Distribution Statement			
Ultraviolet-C (UV-C) Irradiation, Cabin In Configurations, Dosage Levels, Mechanic Change, Weight Change,	This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at <u>actlibrary.tc.faa.gov</u> .			
19. Security Classif. (of this report) 20. Security Classif. (of this particular security Classif.)		ge)	21. No. of Pages	22. Price
Unclassified		114		

ACKNOWLEDGEMENTS

The authors would like to thank the Federal Aviation Administration (FAA) personnel that have been involved in this research project. The authors would like to especially thank Cindy Ashforth and Jeff Gardlin for their contributions and valuable input throughout the research.

The authors would like to extend gratitude to JP Floyd and Kris Rupay from AeroHygenX, Emir Rahislic, and Stephen Yates from Honeywell Aerospace for their efforts in supporting this project.

The authors would like to acknowledge the contributions of the graduate researchers from the National Institute for Aviation Research (NIAR) Advanced Virtual Engineering and Testing Laboratories (AVET): Clayton Ehrstein, Javier Martinez, and Carlos Gatti.

Finally, the authors would like to extend thanks to the SAE Aircraft Seat Committee, S-9 Cabin Safety Provisions Committee, and industry participants for their support in this research.

Contents

1	Int	rodu	ıction	1
	1.1	Ove	erview	1
	1.2	Mat	terial selection	2
	1.3	UV	-C irradiation configurations	3
	1.4	Prej	paration of test articles	3
2	Ma	ateria	al information	3
3	Ult	travi	olet-C dosage configurations	4
4	UV	/-C t	est setup	6
	4.1	Wa	velength configuration: 222 nm	6
	4.2	Wa	velength configuration: 253.4 nm	7
	4.3	Wa	velength configuration: 280 nm 1	0
5	Me	echar	nical properties1	1
	5.1	Plas	stics1	1
	5.1	.1	Test matrix 1	1
	5.1	.2	Specimen dimensions and nomenclature 1	2
	5.1	.3	Test setup 1	3
	5.1	.4	Test results 1	4
	5.2	Hor	neycomb	9
	5.2	.1	Test matrix	9
	5.2	2	Specimen dimensions and nomenclature	9
	5.2	3	Test setup 3	0
	5.2	.4	Test Results	1
	5.2	5	Statistical data evaluation	3
	5.3	Fibe	erglass laminate	5
	5.3	.1	Test matrix	5
	5.3	.2	Specimen dimensions and nomenclature	5
	5.3	.3	Test setup	7

	5.3	.4	Test results	7
	5.3	.5	Statistical data evaluation	9
6	Ph	ysica	l properties4	1
	6.1	Cha	nge in weight	1
	6.2	Cha	nge in color	2
7	Co	nclus	sions	9
8	Re	feren	ıces	2
A	Spe	ecime	en dimensions - PlasticsA-	1
B	Spe	ecime	en dimensions - HoneycombB-	1
С	Spe	ecime	en dimensions - FiberglassC-	1
D	Spe	ecime	en pictures - PlasticsD-	1
E	Spe	ecime	en Pictures - Honeycomb E-	1
F	Spe	ecime	en Pictures - FiberglassF-	1

Figures

Figure 1. Materials evaluated for accelerated aging tests with UV-C exposure	4
Figure 2. UV-C test setup with Ushio Care222 nm lamps	6
Figure 3. UV-C test setup with 253.4 nm lamps – Rayonet Reactor	8
Figure 4. UV-C test setup with 253.4 nm lamps – LightTech	9
Figure 5. UV-C test setup with Aquisense 24G UVinaire 280 nm LED lamp modules	10
Figure 6. Plastic tension specimen geometry	12
Figure 7. Tensile test setup - Plastics	14
Figure 8. Longitudinal stress-strain response – Kydex 6565	16
Figure 9. Yield stress, ultimate tensile strength, and failure strain – Kydex 6565	17
Figure 10. Longitudinal stress-strain response – Boltaron 9815E	18
Figure 11. Yield stress, ultimate tensile strength, and failure strain – Boltaron 9815E	19
Figure 12. Longitudinal stress-strain response – Lexan XHR	21
Figure 13. Yield stress, ultimate tensile strength, and failure strain – Lexan XHR	22
Figure 14. Longitudinal stress-strain response – Boltaron 9815N	23
Figure 15. Yield stress, ultimate tensile strength, and failure strain – Boltaron 9815N	24
Figure 16. Longitudinal stress-strain response – ULTEM TM 9075	25
Figure 17. Yield stress, ultimate tensile strength, and failure strain – ULTEM TM 9075	26
Figure 18. Longitudinal stress-strain response – ULTEM TM 9085	27
Figure 19. Yield stress, ultimate tensile strength, and failure strain – ULTEM TM 9085	28
Figure 20. Long-beam flexure specimen geometry	29
Figure 21. Long-beam flexure test setup	31
Figure 22. Load-displacement response – Honeycomb type A	32
Figure 23. Maximum load comparison – Honeycomb type A	33
Figure 24. Short-beam shear specimen geometry	35
Figure 25. Short-beam shear test setup	37
Figure 26. Load-displacement response – Fiberglass G-10/FR4	38
Figure 27. Short-beam strength comparison – Fiberglass G-10/FR4	39
Figure 28 Qualitative comparison of the change in color – Kydex 6565	44
Figure 29. Qualitative comparison of the change in color – Boltaron 9815E	44
Figure 30. Qualitative comparison of the change in color – Lexan XHR shade 1	45
Figure 31. Qualitative comparison of the change in color – Lexan XHR shade 2	45
Figure 32. Qualitative comparison of the change in color – Boltaron 9815N	46
Figure 33. Qualitative comparison of the change in color – ULTEM TM 9075	46
Figure 34. Qualitative comparison of the change in color – ULTEM TM 9085	47

Figure 35.	Qualitative comparison of the change in color – Honeycomb type A 4	7
Figure 36.	Qualitative comparison of the change in color – Fiberglass G-10/FR4 4	8

Tables

Table 1. Results summary – Plastics	xii
Table 2. Results summary – Honeycomb & Fiberglass	xiii
Table 3. Materials evaluated and their application in aircraft interior	2
Table 4. UV-C wavelength and their representative cumulative dosages	5
Table 5. UV-C exposure parameters: 222 nm	7
Table 6. UV-C Exposure Parameters: 253.4 nm – Rayonet Reactor	
Table 7. UV-C exposure parameters: 253.4 nm – LightTech	9
Table 8. UV-C Exposure Parameters: 280 nm	
Table 9. Tensile test matrix – Plastics	
Table 10. Plastic tension test specimen nominal dimensions, type V	
Table 11. Specimen ID nomenclature for strength characterization - Plastics	
Table 12. Long-beam flexure test matrix - honeycomb	
Table 13. Nominal dimensions of long-beam flexure test specimen	
Table 14. Specimen ID nomenclature for honeycomb test specimens	
Table 15. Statistical data analysis - Honeycomb	
Table 16. Short-beam shear test matrix - fiberglass	
Table 17. Nominal dimensions of a short-beam shear specimen	
Table 18. Specimen ID nomenclature for short-beam shear test specimens	
Table 19. Statistical data analysis - Fiberglass G-10/FR4	
Table 20. Change in weight - Plastics	
Table 21. Change in weight - Honeycomb	
Table 22. Change in weight - Fiberglass	
Table 23. Qualitative color change summary – Plastics	
Table 24. Qualitative color change summary – Honeycomb and Fiberglass	
Table 25. Results summary – Plastics (yield stress)	
Table 26. Results summary – Plastics (ultimate tensile strength)	
Table 27. Results summary – Honeycomb & Fiberglass	

Acronyms

Acronym	Definition
ASTM	American Society for Testing and Materials
AVET	Advanced Virtual and Engineering Testing Laboratories
CFR	Code of Federal Regulations
CMH-17	Composite Materials Handbook-17
DUV	deep-UV
DIC	digital image correlation
FAA	Federal Aviation Administration
FAR	Federal Aviation Regulation
LED	light-emitting diode
NIAR	National Institute for Aviation Research
SAE	Society for Automotive Engineers
UV-C	ultraviolet-C
UVGI	ultraviolet germicidal irradiation

Executive summary

The outbreak of a novel coronavirus disease (COVID-19) in December 2019 resulted in a pandemic bringing operations across the globe to a halt. To reduce virus transmissions during air travel, the aviation industry implemented additional cleaning and disinfectant procedures along with existing standard practices. However, the frequent and extensive use of disinfectant products established a need to understand the long-term effects of disinfectant procedures on aircraft interiors. This study explores the impact of long-term exposure to Ultraviolet-C (UV-C) irradiation on various aircraft cabin interior materials.

With the support of SAE Aircraft Seat and SAE Cabin Interior committees, the researchers identified materials typically used in aircraft seating and cabin interiors such as plastics, honeycomb, and composites. The plastics considered were Kydex 6565, Boltaron 9815E, Lexan XHR, Boltaron 9815N, ULTEMTM 9075, and ULTEMTM 9085. Honeycomb material consists of Nomex[®] core with fiberglass/phenolic resin as the face sheet. The composite material considered was Fiberglass G-10/FR4. This project evaluated three UV-C irradiation configurations with peak emissions at 222 nm, 253.4 nm, and 280 nm. The virus inactivation dose was determined based on the literature review and varied for each wavelength configuration. With the virus inactivation dose required for single UV-C treatment as the baseline dosage, three cumulative dosages were computed representing one treatment per day everyday for one year, four years, and eight years. The materials were then subjected to accelerated aging tests using 222 nm, 253.4 nm, and 280 nm UV-C lamp sources at various cumulative dosage configurations. Post the UV-C exposure, the materials were evaluated for change in weight, color, and mechanical properties.

Plastic materials were evaluated for the effects of UV-C irradiation on tensile properties, honeycomb materials were evaluated for flexure properties, and fiberglass materials for shortbeam strength properties. The first batch of specimens consisting of Kydex 6565, Lexan XHR, Boltaron 9815N, and Boltaron 9815E, when exposed to 253.4 nm light at a 1-year cumulative dose, did not present a significant change in color and mechanical properties when compared to the pristine specimens. Hence, for the 222 nm and 280 nm configurations, the plastic specimens were not subjected to a 1-year cumulative dose and were only subjected to the 4,380 mJ/cm² (4-year) and 8,760 mJ/cm² (8-year) cumulative dose configurations.

Table 1 summarizes the percentage difference in average yield stress and average tensile strength between pristine and UV-C aged plastic specimens. Compared to pristine specimens, Kydex 6565 aged at 222 nm - 8,760 mJ/cm² dosage configuration, presented a reduction between 10% to 15% in average yield stress. From the average tensile strength comparison, the specimen configurations that showed a reduction between 10% to 20% are Kydex 6565 at both dosages of

222 nm and the second and third dosages of 253.4 nm, the first dosage of Lexan XHR and the second dosage configuration of Boltaron 9815N.

Table 2 summarizes the percentage difference in mechanical properties between pristine and UV-C aged honeycomb and fiberglass specimens. Honeycomb specimens at 253.4 nm - 14,600 mJ/cm² (1-year) showed a reduction between 5% to 10% in average maximum load, while the 4-year and 8-year configurations resulted in less than 5% reduction when compared to pristine specimens. Due to the limited sample count, further conclusions could not be made on this variation. Additional research should be performed to better understand this behavior. Fiberglass specimens at all the wavelength and dosage configurations showed less than a 5% reduction in average short-beam strength properties compared to their pristine counterparts.

recentage principal compared to matthe specificity meta stress (wg.)								
Wavelength Configuration	Cumulative Time (years) - One dose/day	Cumulative Dosage (mJ/cm²)	Kydex 6565	Boltaron 9815E	Lexan XHR	Boltaron 9815N	Ultem 9075	Ultem 9085
Avg. Pristine (psi)	N/A	N/A	7548.1	5521.3	10328.4	6636.3	11776.0	10496.1
222	Four	4,380	-4.12	2.16	-4.24	-8.39	4.59	3.69
222 nm	Eight	8,760	-10.39	1.88	1.25	-9.61	3.87	3.62
	One	14,600	-2.61	2.45	2.10	-3.97	N/A	N/A
253.4 nm	Four	58,400	-5.53	4.06	0.80	3.46	4.65	3.29
	Eight	116,800	-5.04	5.54	1.52	-2.15	4.27	6.01
200	Four	54,750	-3.90	2.63	1.72	-1.71	4.12	4.39
280 nm	Eight	109,500	-4.51	3.26	-1.09	-1.90	4.05	4.37
Percentage Difference Compared to Pristine Specimens – Ultimate Tensile Strength (Avg.)								
Perc	entage Difference	Compared to Pr	istine Spec	imens – Ulti	mate Tensil	e Strength	(Avg.)	
Perc Wavelength Configuration	entage Difference Cumulative Time (years) - One dose/day	Compared to Pr Cumulative Dosage (mJ/cm ²)	istine Spec Kydex 6565	imens – Ulti Boltaron 9815E	mate Tensil Lexan XHR	e Strength Boltaron 9815N	(Avg.) Ultem 9075	Ultem 9085
Perc Wavelength Configuration Avg. Pristine (psi)	Cumulative Cumulative Time (years) - One dose/day N/A	Compared to Pr Cumulative Dosage (mJ/cm ²) N/A	Kydex 6565 6680.5	imens – Ulti Boltaron 9815E 5180.4	mate Tensil Lexan XHR 10147.8	e Strength Boltaron 9815N 5263.5	(Avg.) Ultem 9075 9722.5	Ultem 9085 8748.4
Vavelength Configuration Avg. Pristine (psi)	Cumulative Time (years) - One dose/day N/A Four	Compared to Pr Cumulative Dosage (mJ/cm ²) N/A 4,380	Kydex 6565 6680.5 -16.49	Boltaron 9815E 5180.4 -9.25	Lexan XHR 10147.8 -10.47	Boltaron 9815N 5263.5 -9.66	(Avg.) Ultem 9075 9722.5 9.27	Ultem 9085 8748.4 4.59
Vavelength Configuration Avg. Pristine (psi) 222 nm	Cumulative Time (years) - One dose/day N/A Four Eight	Compared to Pr Cumulative Dosage (mJ/cm ²) N/A 4,380 8,760	Kydex 6565 6680.5 -16.49 -16.55 -16.55	Boltaron 9815E 5180.4 -9.25 -6.24	Lexan XHR 10147.8 -10.47 0.04	Boltaron 9815N 5263.5 -9.66 -12.33	(Avg.) Ultem 9075 9722.5 9.27 12.22	Ultem 9085 8748.4 4.59 9.79
Vavelength Configuration Avg. Pristine (psi) 222 nm	Cumulative Time (years) - One dose/day N/A Four Eight One	Compared to Pr Cumulative Dosage (mJ/cm ²) N/A 4,380 8,760 14,600	Kydex 6565 6680.5 -16.49 -16.55 -4.36	Boltaron 9815E 5180.4 -9.25 -6.24 -3.14	Lexan XHR 10147.8 -10.47 0.04 -3.72	Boltaron 9815N 5263.5 -9.66 -12.33 -2.49	(Avg.) Ultem 9075 9722.5 9.27 12.22 N/A	Ultem 9085 8748.4 4.59 9.79 N/A
Wavelength Configuration Avg. Pristine (psi) 222 nm 253.4 nm	Cumulative Time (years) - One dose/day N/A Four Eight One Four	Compared to Pr Cumulative Dosage (mJ/cm ²) N/A 4,380 8,760 14,600 58,400	Kydex 6565 6680.5 -16.49 -16.55 -4.36 -13.28	Boltaron 9815E 5180.4 -9.25 -6.24 -3.14 -6.79	Lexan XHR 10147.8 -10.47 0.04 -3.72 0.70	Boltaron 9815N 5263.5 -9.66 -12.33 -2.49 -2.07	(Avg.) Ultem 9075 9722.5 9.27 12.22 N/A -1.65	Ultem 9085 8748.4 4.59 9.79 9.79 N/A 5.42
Vavelength Configuration Avg. Pristine (psi) 222 nm 253.4 nm	Cumulative Time (years) - One dose/day N/A Four Eight One Four Eight	Compared to Pr Cumulative Dosage (mJ/cm ²) N/A 4,380 8,760 14,600 58,400 116,800	Kydex 6565 6680.5 -16.49 -16.55 -4.36 -13.28 -19.20	Boltaron 9815E 5180.4 -9.25 -6.24 -3.14 -6.79 -6.67	Lexan XHR 10147.8 -10.47 0.04 -3.72 0.70 -2.18	Boltaron 9815N 5263.5 -9.66 -12.33 -2.49 -2.07 -7.16	(Avg.) Ultem 9075 9722.5 9.27 12.22 N/A -1.65 11.11	Ultem 9085 8748.4 4.59 9.79 9.79 N/A 5.42 8.74
Wavelength Configuration Avg. Pristine (psi) 222 nm 253.4 nm	Cumulative Time (years) - One dose/day N/A Four Eight One Four Eight Eight Four	Compared to Pr Cumulative Dosage (mJ/cm ²) N/A 4,380 8,760 14,600 58,400 116,800 54,750	Kydex 6565 -16.49 -16.55 -4.36 -13.28 -19.20	Boltaron 9815E 5180.4 -9.25 -6.24 -3.14 -6.79 -6.67 0.26	Lexan XHR 10147.8 -10.47 0.04 -3.72 0.70 -2.18 -5.21	Boltaron 9815N 5263.5 -9.66 -12.33 -2.49 -2.07 -7.16 -6.42	(Avg.) Ultem 9075 9722.5 9.27 12.22 N/A -1.65 11.11 1.11	Ultem 9085 8748.4 4.59 9.79 9.79 0.74 5.42 8.74 4.26

Table 1. Results summary – Plastics

ntage Difference Compared to Pristing Specimens – Vield Stress (Avg.)

Percentage difference compared to pristine specimens

< 5%

< between 5% to 10%

> 10%

Percentage Difference Compared to Pristine Specimens						
Wavelength Configuration	CumulativeCumulativeHoneycomb –Fiberglass – ShoTime (years) -DosageMaximum LoadBeam StrengthOne dose/day(mJ/cm²)(lbs.)(psi)					
Avg. Pristine	N/A	N/A	152.4	9250.1		
	One	1,095	-2.45	-0.91		
222 nm	Four	4,380	-2.75	-0.16		
	Eight	8,760	-0.22	-0.75		
	One	14,600	-9.66	-0.56		
253.4 nm	Four	58,400	-1.28	-0.80		
	Eight	116,800	-0.24	-0.23		
	One	13,687.5	5.52	-2.21		
280 nm	Four	54,750	-3.47	-0.91		
	Eight	109,500	-0.74	-0.26		

Table 2. Results summary – Honeycomb & Fiberglass

Percentage difference compared to pristine specimens

< between 5% to 10%

> 10%

1 Introduction

In December 2019, an outbreak of a new type of coronavirus was identified in the province of Hubei, China. Since that time, the outbreak has reached most countries worldwide (Panait, 2020). To contain the virus transmissions during air travel, Centers for Disease Control and Prevention (CDC) recommended guidelines for airline operators with respect to disinfecting airplane interiors (CDC, 2022; FAA, 2020). This resulted in the airline industry implementing meticulous and frequent interior disinfection procedures to give passengers confidence that they would not contract the virus while in an aircraft. However, the requirement for excessive use of disinfectants raised concerns about its potential negative impacts on the performance of cabin materials, thus leading to this research. Without the existence of proper guidance on methodologies to identify the potential impact of disinfectants to consider, how to prepare the test articles, and finally, how to perform the test. Using engineering judgement and airline background information assumptions, the collaborative research team rapidly developed a methodology.

1.1 Overview

This research aimed to identify and evaluate the effects of long-term disinfection procedures on the mechanical and physical properties of aircraft interiors. The disinfection procedures evaluated in this research program include chemical and UV-C disinfection techniques. The first phase of this study focused on evaluating the effects of chemical disinfectants on aircraft seating interiors. In this phase, 17 aircraft seating materials were considered and evaluated for the effects of 5 liquid disinfectants on their mechanical and physical properties (Olivares, et al., 2021).

This report presents the findings from the third phase of the study carried out with a focus on the effects of UV-C disinfection procedures. Current efforts were focused on the materials used in aircraft seats and cabin interiors. The materials were selected in conjunction with the SAE Aircraft Seat Committee and SAE S-9 Cabin Safety Provisions Committee. Selected materials were subjected to accelerated aging using UV-C. The material properties, color, and weight change obtained from aged specimens were then compared and analyzed against control specimens. The total UV-C exposure dosage represents one treatment per day, for one year, four years, and eight years.

This report discusses the methods used to age the test specimens with various UV-C wavelength configurations, followed by the discussion on physical and mechanical properties changes. The

results of this work may be used by SAE Committees, other standards organizations, design approval holders, operators, or regulators to create guidelines on the use of UV-C disinfection and application procedures that would minimize the impact on the mechanical characteristics of aircraft interior components.

1.2 Material selection

The materials selected for this study are typical aircraft seat and cabin interior materials. Table 3 presents the materials evaluated in this project and their application in aircraft interiors. These materials were chosen based on the potential targeted surfaces for disinfection in aircraft cabin interiors. Only polymer materials from phases one and two were selected for phase three because they are most likely affected by UV exposure.

Material Type	Application in Aircraft Interior	Material Name	Test Method and Standard
		Kydex 6565	
		Boltaron 9815E	
Diastics	Armrosts and shrouds	Lexan XHR	Tancila ASTM D628
Plastics	Armrests and shrouds	Boltaron 9815N	Telislie – ASTM Dosa
		ULTEM [™] 9075	
		ULTEM TM 9085	
Honeycomb	Floor, ceilings, kitchen walls, cabinets	Nomex [®] core with fiberglass/phenolic resin	Flexure – ASTM D7249
Composite	Used as face sheets in honeycomb sandwich structures such as floors, ceilings, kitchen walls, cabinets	Fiberglass G-10/FR4	Short-beam shear – ASTM D2344

Table 3. Materials evaluated and their application in aircraft interior

1.3 UV-C irradiation configurations

Three different wavelength configurations evaluated in this study are 222 nm, 253.4 nm, and 280 nm. They were chosen based on the current and potential future applications in UV-C germicidal irradiation (UVGI). UV-C light sources with peak emissions at 253.4 nm is the conventionally used UV-C disinfection technique. There are several commercially available 253.4 nm UV-C systems that are used for aircraft disinfection (Honeywell, 2022; Aero HygenX, 2022). The second configuration chosen was far UV-C 222 nm which has gained increased attention since the Covid-19 outbreak. Available data suggests that unlike the 253.4 nm light source, the 222 nm light source could inactivate viruses without causing DNA lesions, erythema, photo-keratitis, and other associated effects of 253.4 nm light to biological tissue (Boeing, 2022). The third configuration chosen was the UV-C light source with peak emissions at 280 nm. This technology is currently used in aviation, automotive, and other residential and commercial applications (AquiSense, 2022).

1.4 Preparation of test articles

Raw materials (plastics, honeycomb, and composite) were machined following their respective test standards. Before the specimen's exposure to UV-C light, the weight and color of each specimen were documented. The specimens were then subjected to accelerated aging tests using different light sources for 222 nm, 253.4 nm, and 280 nm configurations. Specimens were exposed to UV-C light with varying dosages and, consequently, different durations. Three cumulative dosage configurations were considered representing a single treatment of UV-C dose every day for one year, four years, and eight years. The single treatment of UV-C dose depends on the dose required to inactivate the virus and varies based on the wavelength configuration. Detailed information regarding the baseline dose, cumulative doses, UV-C light sources, intensity, and exposure time are presented in Section 4.

2 Material information

In this investigation, three different material types used for aircraft seating and cabin interior were selected. These materials included six plastics, one honeycomb, and one fiberglass laminate, as shown in Figure 1. All the materials treated with UV-C exposure were evaluated for mechanical properties, change in weight, and color.

Figure 1. Materials evaluated for accelerated aging tests with UV-C exposure

3 Ultraviolet-C dosage configurations

This study considered three different UV-C wavelengths with varying configurations of dosage. The three UV-C wavelengths of interest are 222 nm, 253.4 nm, and 280 nm. The efficiency of UV-C radiation to inactivate microbes depends on the ultraviolet dosage. This dosage varies based on the UV-C wavelength configuration and was determined based on the literature review. According to the International Ultraviolet Association (IUVA), at 253.4 nm wavelength, the UV-C dose necessary to inactivate the virus on flat and ideal surfaces should at least be 40 mJ/cm² (IUVA, 2022). Based on this baseline dosage, test specimens were exposed to three different cumulative dosages, as presented in Table 4. The cumulative dosages were computed to represent one treatment per day every day for one year, four years, and eight years.

UV-C lamps with emissions at wavelengths such as 222 nm and 280 nm are also in-use for germicidal inactivation (U.S. Food & Drug Administration, 2022) (Inagaki, Saito, Sugiyama, Okabayashi, & Fujimoto, 2020). The literature research conducted to determine the appropriate UV-C dosage levels at 222 nm was concluded to be 3 mJ/cm². This dosage level was observed to effectively inactivate 99.7% of the virus on surfaces (Kitagawa, et al., 2020). Based on this

baseline dosage, the impact of 222 nm UV-C light on test specimens would be evaluated for three different cumulative dosages, as shown in Table 4.

The light sources available for 280 nm wavelength are UV-C light emitting diodes (LEDs). Because of their novel functionality in surface disinfection, there is limited research available in the public domain. The study conducted to determine the effects of wavelength on the disinfection of human coronavirus (HCoV-OC43) reported an irradiation dose of 6-7 mJ/cm² for 3-log inactivation at 279 nm (Gerchman, Mamane, Friedman, & Mandelboim, 2020). The virus evaluated in this study was the human coronavirus HCoV-OC43 which was considered a surrogate for SARS-CoV-2. Another research publication discusses the rapid inactivation of SARS-CoV-2 with deep-UV (DUV) LED irradiation (Inagaki, Saito, Sugiyama, Okabayashi, & Fujimoto, 2020). This study evaluated the antiviral efficacy of irradiation by DUV-LED at a wavelength range of 280±5 nm. The SARS-CoV-2 virus was considered for this study. The virus was irradiated for 1, 10, 20, 30, and 60 seconds with each dosage time corresponding to an irradiation dose of 3.75, 37.5, 75, 112.5, and 225 mJ/cm². A 99.9% inactivation rate was reported for the dosage time beginning at 10 seconds. Due to the evaluation of SARS-CoV-2 and the higher dosage configuration that can be considered conservative in this study, the dosage value for the 280 nm configuration in the present research was chosen as 37.5 mJ/cm². Three cumulative dosages corresponding to one, four, and eight years at one treatment per day are evaluated as presented in Table 4.

UV-C Wavelength (nm)	Baseline Treatment Dose (mJ/cm ²)	Cumulative Time (Years)	Cumulative Dosage at one treatment/day (mJ/cm ²)
		One	1095
222	3	Four	4380
		Eight	8760
		One	14600
253.4	40	Four	58400
		Eight	116800
		One	13687.5
280	37.5	Four	54750
		Eight	109500

Table 4.	UV-C	wavelength	and their	representative	cumulative	dosages

4 UV-C test setup

This section discusses the UV-C test setup, light sources, their irradiance, and the exposure duration for the three wavelength configurations. Test specimens were subjected to accelerated aging experiments under UV-C exposure based on the cumulative dosages discussed in Section 3. Each test configuration was employed with light sources that emit peak emissions at the intended wavelength. Based on the intensity of the UV-C light source and the predetermined cumulative UV-C dosage, the exposure duration was computed using Equation 1. Light intensity was measured with a UV-C radiometer placed at the same location as the specimens.

UV Dose $(mJ/cm^2) = UV$ Intensity (mW/cm^2) x Exposure Time (seconds) (1)

4.1 Wavelength configuration: 222 nm

Care222 B1 Illuminator modules acquired from Ushio (Ushio, 2022) were used for the accelerated aging tests at 222 nm UV-C configuration. Care222 B1 illuminator module is a filtered 222 nm UV-C light source with excimer lamps intended for microbial inactivation applications. The module is equipped with a band-pass filter which filters out harmful wavelengths above 230nm. In this study, four illuminator modules were used for the specimen aging, as shown in Figure 2.

Figure 2. UV-C test setup with Ushio Care222 nm lamps

A UV-C radiometer was used to record irradiance at four different points within the exposure area of each module. Based on the average irradiance obtained and the cumulative UV-C doses, each configuration's exposure duration was computed and presented in Table 5.

Average Intensity (mW/cm ²)	Cumulative Dosage (mJ/cm ²)	Exposure Duration (minutes)
	1,095	23.5
0.78	4,380	94
	8,760	188

Table 5. UV-C exposure parameters: 222 nm

The first batch of specimens consisting of Kydex 6565, Lexan XHR, Boltaron 9815N, and Boltaron 9815E, when exposed to 253.4 nm light at a 1-year cumulative dose, did not present a significant change in color and mechanical properties when compared to the pristine specimens. Hence, for the 222 nm configuration, the plastic specimens were not subjected to a 1-year cumulative dose and were only subjected to the 4,380 mJ/cm² (4-year) and 8,760 mJ/cm² (8-year) cumulative dose configurations. However, honeycomb and composite specimens were exposed to all three cumulative dose configurations.

4.2 Wavelength configuration: 253.4 nm

For the 253.4 nm configuration, while the first batch of specimens was subjected to UV-C exposure using the Rayonet reactor (Rayonet, 2022), the second batch of specimens was aged using LightTech lamps (LightTech LightSources, 2022). Plastic specimens such as Kydex 6565, Lexan XHR, Boltaron 9815N, and Boltaron 9815E were aged using the Rayonet reactor with support from Honeywell Aerospace (Honeywell Aerospace, 2022). ULTEMTM 9075, ULTEMTM 9085, honeycomb sandwich, and composite specimens were aged with 253.4 nm lamps from LightTech with support from Aero HygenX (Aero HygenX, 2022).

The first batch of test specimens subjected to UV-C exposure at 253.4 nm was aged in a Rayonet reactor. A Rayonet reactor is a photochemical reactor equipped with mercury vapor UV-C lamps along the circumference of the reactor barrel, as shown in Figure 3. The reactor base consists of a fan that maintains the temperature during exposure within 10° C of room temperature. A UV-C radiometer placed at the same distance as the specimens was used to measure the light intensity. Measurements were recorded all around the circumference to obtain an average intensity value.

Based on the average intensity value and the predetermined UV-C dosage, the exposure durations were computed using Equation 1 and are presented in Table 6.

253.4 lamps inside the Rayonet reactor barrel

Test specimens taped to the pipe and suspended into the reactor barrel

Figure 3. UV-C test setup with 253.4 nm lamps - Rayonet Reactor

Average Intensity (mW/cm ²)	Cumulative Dosage (mJ/cm ²)	Exposure Duration (minutes)
	14,600	18.4
13.2	58,400	73.6
	116,800	147.2

Table 6. UV-C Exposure Parameters: 253.4 nm – Rayonet Reactor

During the setup, test specimens were taped on the surface of a PVC pipe and placed at the center of the reactor barrel as shown in Figure 3. The distance between the surface of the pipe and the lamps was approximately two inches. The aging began with the lamps emitting light at 253.4 nm wavelength with the gradual rotation of the pipe to ensure all the specimens reached the desired dosage levels. Taping the specimens on the pipe only allows one surface of the specimens to be exposed to UV-C irradiation while leaving the other surface unexposed. To have the entire specimen aged, the specimens were flipped after the first treatment and followed with another treatment to complete the aging process.

The second batch of specimens (ULTEMTM 9075, ULTEMTM 9085, honeycomb sandwich, and composite) were aged using 253.4 nm lamps from LightTech LightSources. Two lamps were used for the aging process, with the specimens placed 12 inches below the lamps on a table. The

test setup is shown in Figure 4. The irradiance was measured at four different points in the exposure area using a UV-C radiometer to obtain an average irradiance value. The average irradiance, dosage, and corresponding exposure duration are presented in Table 7.

Figure 4. UV-C test setup with 253.4 nm lamps - LightTech

Table 7.	UV-C	exposure	parameters:	253.4 nm –	LightTech
----------	------	----------	-------------	------------	-----------

Average Intensity (mW/cm ²)	Cumulative Dosage (mJ/cm ²)	Exposure Duration (minutes)
	14,600	46
5.28	58,400	184
	116,800	368

To be conservative, in the initial phase of the research study, the plastic materials were subjected to UV-C exposure on both the faces of the specimen. However, in real-world applications, generally only one face of the interiors would be exposed to disinfection while the other face remains unexposed to surface contamination. Following this approach, only one face of honeycomb and fiberglass specimens was exposed to UV-C light.

At a cumulative dose of 14,600 mJ/cm², the first batch of plastic specimens aged using the Rayonet reactor showed no significant discoloration or change in mechanical properties compared to their pristine counterparts. Hence, ULTEMTM 9075 and ULTEMTM 9085 were only aged under cumulative doses of 58,400 mJ/cm² and 116,800 mJ/cm². Honeycomb sandwich and composite specimens were subjected to all three cumulative dosage configurations.

4.3 Wavelength configuration: 280 nm

Aquisense 24G UVinaire lamp module units were used for the accelerated aging tests at 280 nm UV-C configuration (AquiSense, 2022). UVinaire lamps are UV-C disinfection systems equipped with LEDs. In this study, four lamp modules were used for the specimen aging as shown in Figure 5. Average irradiance was computed using a UV-C radiometer with measurements from four different locations within the exposure area of each unit. The average irradiance, cumulative UV-C doses, and the corresponding exposure duration for each configuration are presented in Table 8. Similar to the 222 nm wavelength configuration, the plastic specimens were only exposed to cumulative doses of 54,750 mJ/cm² (4-year) and 109,500 mJ/cm² (8-year) for the 280 nm configuration. However, honeycomb and composite specimens were exposed to all three cumulative dose configurations.

Figure 5. UV-C test setup with Aquisense 24G UVinaire 280 nm LED lamp modules

Average Intensity (mW/cm ²)	Cumulative Dosage (mJ/cm ²)	Exposure Duration (minutes)
	13,687.5	22.5
10.14	54,750	90
	109,500	180

Table 8. UV-C Exposure Parameters: 280 nm

5 Mechanical properties

A variety of mechanical tests were conducted to understand the effects of UV-C irradiation on the mechanical properties of the selected cabin interior materials. The details of the test methods and experimental observations are discussed in this section.

5.1 Plastics

Test matrix

Uniaxial tension tests were conducted on six different plastic types following ASTM D638 (ASTM International, 2014). Three specimens were tested per wavelength and cumulative time for each plastic type, as shown in Table 9.

		Wavelength Configuration							
Dia stia Truna	Test Standard	253.4 nm			222 nm		280 nm		
Plastic Type		rd Cumulative Time (Year)							
		One	Four	Eight	Four	Eight	Four	Eight	
Kydex 6565		x 3	x 3	x 3	x 3	x 3	x 3	x 3	
Boltaron 9815E		x 3	x 3	x 3	x 3	x 3	x 3	x 3	
Lexan XHR	ASTM	x 3	x 3	x 3	x 3	x 3	x 3	x 3	
Boltaron 9815N	D638	x 3	x 3	x 3	x 3	x 3	x 3	x 3	
ULTEM TM 9075		-	x 3	x 3	x 3	x 3	x 3	x 3	
ULTEM TM 9085		_	x 3	x 3	x 3	x 3	x 3	x 3	

Table 9.	Tensile	test matrix	– Plastics
1 4010 / .	remone	cost maan	I Institut

5.1.1 Specimen dimensions and nomenclature

Specimens were manufactured from bulk plastic sheets in accordance with ASTM D638 (ASTM International, 2014). Based on the thickness of the plastic sheets, specimen Type V was selected, as shown in Figure 6. Nominal dimensions for the same are summarized in Table 10. Dimensions were measured for all the specimens and summarized in Appendix A.

Figure 6. Plastic tension specimen geometry

Table	10	Plastic	tension	test s	necimen	nominal	dimensions	type	V
1 auto	10.	1 Iustic	tension	icsi s	peemen	nommai	unifications,	type	v

Length Overall [LO], in	2.500
Length of Narrow Section [L], in	0.375
Gage Length [G], in	0.300
Width Overall [WO], in	0.375
Width Narrow Section [W], in	0.125
Distance Between Grips [D], in	1.000
Radius of Fillet [R], in	0.500

To facilitate specimen identification and traceability, this study used the following nomenclature [Client ID – Test Method ID – Plastic Type ID – UV Cumulative Dosage ID – Specimen #]. **Error! Reference source not found.** summarizes specimen identification nomenclature used for ifferent materials.

Client ID	FAA	FAA
Test Method ID	ASTM D638 – Tension	Т
	Kydex 6565	P1
	Boltaron 9815E	P2
	Lexan XHR	P3
Specimen Type	Boltaron 9815N	P4
	ULTEM TM 9075	P5
	ULTEM TM 9085	P6
	One year	D6
UV-C Dosage	Four years	D7
[253.4 nm]	Eight years	D8
UV-C Dosage	Four years	D9
[222 nm]	Eight years	D10
UV-C Dosage	Four years	D11
[280 nm]	Eight years	D12

Table 11. Specimen ID nomenclature for strength characterization - Plastics

5.1.2 Test setup

Tests were conducted at room temperature under displacement control at a nominal displacement rate of 0.05 in/min. A non-contact strain measurement technique, Digital Image Correlation (DIC), was employed to measure longitudinal strains, as shown in the test setup in Figure 7. All tests were conducted at room temperature until failure. The test apparatus used was an MTS Electrodynamic testing load frame with a static load capacity of 450 lbs.

Figure 7. Tensile test setup - Plastics

5.1.3 Test results

Six different types of plastic specimens, pristine and UV-C aged, were tested for tensile properties following the ASTM D638 test standard and the test matrix detailed in Table 9. Figure 8 through Figure 19 present the stress-strain data for each material type, as well as comparisons between the mechanical properties such as yield stress, ultimate tensile strength, and failure strain between pristine and UV-C aged specimens. Post-test failure pictures of all the specimens are presented in Appendix B.

The stress-strain data of Kydex 6565, pristine and specimens exposed to accelerated UV-C aging tests at various dosages under 222 nm, 253.4 nm, and 280 nm wavelengths, is presented in Figure 8. Figure 9 compares yield stress, ultimate tensile strength, and failure strain between pristine and UV-C exposed specimens. The specimens exposed to 222 nm - 4,380 mJ/cm² presented less than a 5% reduction in average yield stress compared to their pristine counterparts. The second dosage configuration at 8,760 mJ/cm² showed a 10% reduction when compared to average pristine specimen data. For the 253.4 nm configuration, the first dosage configuration showed a reduction of less than 5%, the second and third dosage configurations presented a reduction between 5% to 10% compared to the average yield stress of pristine specimens. For the 280 nm configuration, both dosage configurations showed less than a 5% reduction in average yield stress.

The average ultimate tensile strength comparison presented a 15% to 20% reduction for both the 222 nm dosage configurations. For the 253.4 nm wavelength configuration, the first dosage showed less than a 5% reduction in average ultimate tensile strength, the second dosage showed a 13% reduction, and the third dosage configuration presented a 19% reduction in average

ultimate tensile strength when compared to pristine specimens. Both the 280 nm dosage configurations presented less than a 5% reduction in average ultimate tensile strength compared to pristine specimens. The failure strain was noticed to be highly variable for most of the specimen configurations. The high variability could be noticed even within the pristine specimen data.

The stress-strain data of Boltaron 9815E test specimens, pristine and specimens exposed to accelerated UV-C aging tests at various dosages under 222 nm, 253.4 nm, and 280 nm wavelengths, is presented in Figure 10. Figure 11 compares yield stress, ultimate tensile strength, and failure strain between pristine and UV-C exposed specimens. Reduction in average yield stress was less than 5% for all the UV-C aged specimens compared with their pristine counterparts. The average ultimate tensile strength comparison presented a 5% to 10% reduction for both the 222 nm dosage configurations. For the 253.4 nm wavelength configuration, the first dosage showed less than a 5% reduction in average ultimate tensile strength. The second and third dosage configurations showed a reduction between 5% to 10% compared to pristine specimens. Both the 280 nm dosage configurations presented less than a 5% reduction in average ultimate tensile strength compared to pristine specimens.

Figure 8. Longitudinal stress-strain response - Kydex 6565

Figure 9. Yield stress, ultimate tensile strength, and failure strain - Kydex 6565

Figure 10. Longitudinal stress-strain response – Boltaron 9815E

Figure 11. Yield stress, ultimate tensile strength, and failure strain – Boltaron 9815E

The stress-strain data of Lexan XHR test specimens, pristine and specimens exposed to accelerated UV-C aging tests at various dosages of 222 nm, 253.4 nm, and 280 nm wavelengths, is presented in Figure 12. Figure 13 compares yield stress, ultimate tensile strength, and failure strain between pristine and UV-C exposed specimens. Reduction in average yield stress was less than 5% for all the UV-C aged specimens compared with their pristine counterparts. For the 222 nm - 4,380 mJ/cm2 configuration, a 10% reduction in average ultimate tensile strength was observed. For the 253.4 nm wavelength configuration, all three dosage configurations showed less than a 5% reduction in average ultimate tensile strength compared to pristine specimens. Both the 280 nm dosage configurations showed a reduction between 5% to 10% in average ultimate tensile strength.

The stress-strain data of Boltaron 9815N test specimens, pristine and specimens exposed to accelerated UV-C aging tests at various dosages of 222 nm, 253.4 nm, and 280 nm wavelengths, is presented in Figure 14. Figure 15 compares yield stress, ultimate tensile strength, and failure strain between pristine and UV-C exposed specimens. Reduction in average yield stress was between 5% to 10% for the specimens aged with 222 nm dosages. For all the other dosage configurations at 253.4 nm and 280 nm wavelengths, the reduction in yield stress was less than 5% compared with their pristine counterparts. For the 222 nm - 8,760 mJ/cm2 configuration, the reduction in average ultimate tensile strength was observed to be between 10% to 15%. For the 253.4 nm wavelength configuration, the first and second dosage configurations showed less than a 5% reduction in average ultimate tensile strength. The third dosage configuration presented a reduction in average ultimate tensile strength between 5% to 10%. Both the 280 nm dosage configurations showed a reduction between 5% to 10% in average ultimate tensile strength.

Figure 12. Longitudinal stress-strain response - Lexan XHR

Figure 13. Yield stress, ultimate tensile strength, and failure strain - Lexan XHR

Figure 14. Longitudinal stress-strain response – Boltaron 9815N

Figure 15. Yield stress, ultimate tensile strength, and failure strain - Boltaron 9815N

The stress-strain data of ULTEMTM 9075 test specimens, pristine and specimens exposed to accelerated UV-C aging tests at various dosages under 222 nm, 253.4 nm, and 280 nm wavelengths, is presented in Figure 16. Figure 17 compares yield stress, ultimate tensile strength, and failure strain between pristine and UV-C exposed specimens. For all the specimen configurations, no reduction in average yield stress, average tensile strength, and average failure

strain was observed when compared with pristine specimens. However, an increase in tensile properties of aged specimens in comparison to the pristine specimens was observed. This behavior needs to be further evaluated in future work.

Figure 16. Longitudinal stress-strain response – ULTEMTM 9075

Figure 17. Yield stress, ultimate tensile strength, and failure strain – ULTEMTM 9075

The stress-strain data of ULTEMTM 9085 test specimens, pristine and specimens exposed to accelerated UV-C aging tests at various dosages under 222 nm, 253.4 nm, and 280 nm wavelengths, is presented in Figure 18. Figure 19 compares yield stress, ultimate tensile strength, and failure strain between pristine and UV-C exposed specimens. For all the specimen configurations, no reduction in average yield stress, average ultimate tensile strength, and

average failure strain was observed when compared with pristine specimens. Similar to UltemTM 9075, an increase in tensile properties of aged specimens in comparison to pristine specimens was observed for UltemTM 9085. This behavior needs to be further evaluated in future work.

Figure 18. Longitudinal stress-strain response – ULTEMTM 9085

Figure 19. Yield stress, ultimate tensile strength, and failure strain – ULTEMTM 9085

5.2 Honeycomb

5.2.1 Test matrix

Honeycomb specimens were subjected to accelerated UV-C aging tests at three different cumulative dosages per wavelength configuration. Test specimens were then evaluated for the effects of UV-C irradiation on the mechanical properties through long-beam flexure experiments. The tests were conducted following the ASTM D7249 (ASTM International, 2020). Five specimens were tested per configuration, as shown in Table 12.

		Wavelength Configuration											
Honeycomb	Test		222 nm	l	2	53.4 nr	n	280 nm					
Туре	Standard	Cumulative Time (Year)											
		One	Four	Eight	One	Four	Eight	One	Four	Eight			
Honeycomb	ASTM	v 5	v 5	v 5	v 5	v 5	v 5	v 5	v 5	v 5			
type A	D7249	хJ	X 3	хэ	хэ	X 3	X	хJ	хэ	хJ			

Table 12. Long-beam flexure test matrix - honeycomb

5.2.2 Specimen dimensions and nomenclature

Test specimens were manufactured from honeycomb sandwich panels in accordance with ASTM D7249 (ASTM International, 2020). Nominal specimen geometry and dimensions are summarized in Figure 20 and Table 13. Dimensions of all the test specimens have been summarized in Appendix B.

Figure 20. Long-beam flexure specimen geometry

Overall length [L], in	24.0
Overall width [W], in	3.0
Panel thickness [T], in	0.4

Table 13. Nominal dimensions of long-beam flexure test specimen

To facilitate specimen identification and traceability, the following nomenclature was used [Client ID – Test Method ID – Honeycomb Type ID – UV Cumulative Dosage ID – Specimen #] in this study. Table 14 summarizes the nomenclature used for honeycomb test specimens.

Client ID	FAA	FAA
Test Method ID	ASTM D7249 – Flexure	F
Honeycomb Type	Honeycomb Type A	H1
	One year	D6
UV-C Dosage	Four years	D7
[233. - IIII]	Eight years	D8
	One year	D13
UV-C Dosage	Four years	D9
	Eight years	D10
	One year	D14
UV-C Dosage	Four years	D11
	Eight years	D12

Table 14. Specimen ID nomenclature for honeycomb test specimens

5.2.3 Test setup

Long-beam flexure tests were conducted under displacement control at a nominal displacement rate of 0.25 in/min. MTS Servo-Hydraulic test frame with a load capacity of 22,000 lbs. was used to conduct the experiments. All the experiments were conducted at room temperature until specimen failure. DIC was employed to record displacement data during the experiments. The test setup along with the camera used for DIC measurements is presented in Figure 21.

Figure 21. Long-beam flexure test setup

5.2.4 Test Results

Honeycomb specimens, pristine and UV-C aged, were subjected to long-beam flexural tests following the ASTM D7249 test standard and the test matrix detailed in Table 12. Load-displacement data of each specimen configuration is presented in Figure 22. The maximum load data compared between pristine and UV-C aged specimens is presented in Figure 23. Post-test failure pictures of all the specimens are presented in Appendix E.

For the 253.4 nm - 1-year configuration, the reduction in average maximum load was observed to be between 5% to 10% but the second (4-year) and third (8-year) cumulative dosage configurations showed the reduction in average maximum load to be less than 5% when compared to pristine specimens. It must be noted that all the test specimens for the one-year dosage configuration showed similar failure modes. Due to the small sample count, any further conclusions could not be made on this reduction in maximum load. Additional research should be performed before using this material-UV disinfection combination in service. For all other specimen configurations at 222 nm and 280 nm, the reduction in average maximum load was less than 5% compared with their pristine counterparts.

Figure 22. Load-displacement response – Honeycomb type A

Figure 23. Maximum load comparison – Honeycomb type A

5.2.5 Statistical data evaluation

Statistical analysis of honeycomb test data was conducted following the Composite Materials Handbook (CMH-17) guidelines (Polymer matrix composites: guidelines for characterization of structural materials, 2012). For the acceptance of the material properties from any batch of specimens, it must be shown that the properties obtained from the current batch are "equivalent" to the qualification batch; i.e., the batch data meets the material specification limits (Polymer matrix composites: guidelines for characterization of structural materials, 2012). This study treats material properties obtained from unaged honeycomb specimens as the qualification batch. The equivalency of the maximum load of specimens aged with UV-C is shown in Table 15. The standard equivalency method typically evaluates larger sample batches from multiple data sets. Due to the small sample batch considered in this study, the modified Coefficient of Variation (CV) of 6% method was utilized for equivalency criteria. This method is in accordance with Section 8.4.4 of CMH-17-1G (Polymer matrix composites: guidelines for characterization of structural materials, 2012). Honeycomb specimens pass equivalency criteria for maximum load with a modified CV of 6% for all the wavelength and dosage configurations.

			222	2 nm					253.	.4 nm				280 nm					
Maximum Load (lbf)	1,095	mJ/cm ²	4,380	mJ/cm ²	8,760 mJ/cm ²		14,600	mJ/cm ²	58,400 mJ/cm ²		116,800 mJ/cm ²		13,687.5	5 mJ/cm ²	54,750	mJ/cm ²	109,500	mJ/cm ²	
	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	
Data as measured	Insuffic	ient Data	Insuffic	Insufficient Data Insu		ient Data	Insuffic	ient Data	Insuffic	ient Data	Insuffic	ient Data	Insuffic	ient Data	Insuffic	ient Data	Insuffic	ient Data	
Mean Maximum Load (lbf)	152.4	148.6	152.4	148.2	152.4	152.0	152.4	137.6	152.4	150.4	152.4	152.0	152.4	160.8	152.4	147.1	152.4	151.2	
Standard Deviation	2.257	5.536	2.257	7.953	2.257	6.086	2.257	9.308	2.257	6.591	2.257	7.157	2.257	4.569	2.257	3.281	2.257	3.625	
Coefficient of Variation %	1.481	3.725	1.481	5.368	1.481	4.003	1.481	6.762	1.481	4.382	1.481	4.709	1.481	2.842	1.481	2.231	1.481	2.397	
Minimum	149.7	139.4	149.7	135.7	149.7	146.1	149.7	137.0	149.7	142.0	149.7	143.1	149.7	154.1	149.7	143.0	149.7	148.2	
Maximum	154.7	154.0	154.7	153.8	154.7	158.4	154.7	147.9	154.7	156.0	154.7	161.6	154.7	164.5	154.7	150.8	154.7	155.4	
Number of Specimens	5	5	5	5	5	4	5	4	5	5	5	5	5	5	5	5	5	5	
RESULTS	FA	AIL .	FA	AIL .	FA	IL	FA	IL	FA	IL	FA	AIL .	PA	SS	FA	IL	PA	SS	
Minimum Acceptable Equiv. Sample Mean	15	50.4	15	50.4	15	0.2	15	0.2	15	i0.4	15	50.4	15	50.4	15	0.4	15	0.4	
Minimum Acceptable Equiv. Sample Min	14	6.6	14	6.6	14	6.8	14	6.8	14	6.6	146.6		14	46.6	14	6.6	14	6.6	
MOD CV RESULTS	PASS w	ith MOD	PASS w	ith MOD	PASS w	ith MOD	PASS w	ith MOD	PASS with MOD		PASS w	ith MOD	PASS w	ith MOD	PASS w	ith MOD	PASS w	ith MOD	
Modified CV%	6.	000	6.	000	6.	000	6.	000	6.	000	6.	000	6.	000	6.0	000	6.000		
Minimum Acceptable Equiv. Sample Mean	14	4.6	14	144.6		143.4		133.4		144.6		144.6		144.6		144.6		4.6	
Minimum Acceptable Equiv. Sample Min	12	.9.2	12	.9.2	12	9.8	12	0.7	12	.9.2	12	29.2	12	29.2	12	9.2	12	9.2	

Table 15. Statistical data analysis - Honeycomb

5.3 Fiberglass laminate

5.3.1 Test matrix

Fiberglass specimens were subjected to accelerated UV-C aging tests at three different cumulative dosages per wavelength configuration. Test specimens were then evaluated for the effects of UV-C irradiation on the mechanical properties through short-beam shear experiments. The tests were conducted following the ASTM D2344 (ASTM International, 2016). Five specimens were tested per configuration, as shown in Table 16.

Fiberglass Laminate		Wavelength Configuration										
	Test Standard	222 m	n		253.4	nm		280 nm				
Type		Cumulative Time (Year)										
v		One	Four	Eight	One	Four	Eight	One	Four	Eight		
Fiberglass G-10/FR4	ASTM D2344	x 5	x 5	x 5	x 5	x 5	x 5	x 5	x 5	x 5		

Table 16. Short-beam shear test matrix - fiberglass

5.3.2 Specimen dimensions and nomenclature

Test specimens were manufactured from fiberglass laminates following the ASTM D2344 guidelines (ASTM International, 2016). Nominal specimen geometry and dimensions are summarized in Figure 24 and Table 17. Dimensions of all the test specimens have been summarized in Appendix C.

Figure 24. Short-beam shear specimen geometry

Overall length [L], in	1.50
Overall width [W], in	0.50
Panel thickness [T], in	0.25

Table 17. Nominal dimensions of a short-beam shear specimen

To facilitate specimen identification and traceability, the following nomenclature was used [Client ID – Test Method ID – Fiberglass Laminate Type ID – UV Cumulative Dosage ID – Specimen #] in this study. Table 18 summarizes the nomenclature used for short-beam shear test specimens.

Table 18. Specimen ID nomenclature for short-beam shear test specimens

Client ID	FAA	FAA
Test Method ID	ASTM D2344 – Short-beam shear	S
Fiberglass Laminate Type	Fiberglass G-10/FR4	FG1
	One year	D6
UV-C Disinfectant Dosage [253 4 nm]	Four years	D7
	Eight years	D8
	One year	D13
UV-C Disinfectant Dosage [222 nm]	Four years	D9
	Eight years	D10
	One year	D14
UV-C Disinfectant Dosage [280 nm]	Four years	D11
	Eight years	D12

5.3.3 Test setup

Short-beam shear tests were conducted under displacement control at a nominal displacement rate of 0.05 in/min. MTS Servo-Hydraulic test frame with a load capacity of 22,000 lbs. was used to conduct the experiments. All the experiments were conducted at room temperature until specimen failure. The test setup is presented in Figure 25.

Figure 25. Short-beam shear test setup

5.3.4 Test results

Fiberglass specimens, pristine and UV-C aged, were subjected to short-beam shear tests following the ASTM D7249 test standard and the test matrix detailed in Table 16. Post-test failure pictures of all the specimens are presented in Appendix F. Load-displacement data of each specimen configuration is presented in Figure 26. As shown in Figure 27, the reduction in average short-beam shear strength was less than 5% for all the UV-C aged specimens compared with their pristine counterparts.

Figure 26. Load-displacement response - Fiberglass G-10/FR4

Figure 27. Short-beam strength comparison – Fiberglass G-10/FR4

5.3.5 Statistical data evaluation

Statistical analysis of short-beam shear test data was conducted following the CMH-17 guidelines (Polymer matrix composites: guidelines for characterization of structural materials, 2012). For the acceptance of the material properties from any batch of specimens, it must be shown that the properties obtained from the current batch are "equivalent" to the qualification batch; i.e., the batch data meets the material specification limits (Polymer matrix composites: guidelines for characterization of structural materials, 2012). The current study treats material properties obtained from unaged fiberglass specimens as the qualification batch. The equivalency of the short-beam strength of specimens aged with UV-C is shown in Table 19. The standard equivalency method typically evaluates larger sample batches from multiple data sets. Due to the small sample batch considered in this study, the modified Coefficient of Variation (CV) of 6% method was utilized for equivalency criteria. This method is in accordance with Section 8.4.4 of CMH-17-1G (Polymer matrix composites: guidelines for characterization of structural materials, 2012). For all the wavelength and dosage configurations, fiberglass specimens pass equivalency criteria for short-beam strength with a modified CV of 6%.

			222	nm					253.	4 nm				280 nm					
Short-Beam Strength (psi)	1,095 r	nJ/cm ²	4,380 1	nJ/cm ²	8,760 mJ/cm ²		14,600	mJ/cm ²	58,400	58,400 mJ/cm ² 116,800		mJ/cm ²	13,687.5	mJ/cm ²	54,750	mJ/cm ²	109,500	mJ/cm ²	
	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	Qual.	Equiv.	
Data as measured	Insuffici	ient Data	Insuffici	Insufficient Data Ins		Insufficient Data		Insufficient Data		ient Data	Insufficient Data		Insuffici	ent Data Insuffici		ent Data	Insuffici	ent Data	
Mean Maximum Load (lbf)	9,250.1	9,166.1	9,250.1	9,235.1	9,250.1	9,180.8	9,250.1	9,197.9	9,250.1	9,175.7	9,250.1	9,228.6	9,250.1	9,045.3	9,250.1	9,165.7	9,250.1	9,226.3	
Standard Deviation	85.831	99.396	85.831	101.480	85.831	53.708	85.831	97.255	85.831	124.052	85.831	92.700	85.831	114.868	85.831	43.474	85.831	137.433	
Coefficient of Variation %	0.928	1.084	0.928	1.099	0.928	0.585	0.928	1.057	0.928	1.352	0.928	1.004	0.928	1.270	0.928	0.474	0.928	1.490	
Minimum	9,172.4	8,998.3	9,172.4	9,088.4	9,172.4	9,093.9	9,172.4	9,093.2	9,172.4	9,036.0	9,172.4	9,078.4	9,172.4	8,877.3	9,172.4	9,104.7	9,172.4	9,070.6	
Maximum	9,376.3	9,256.3	9,376.3	9,353.2	9,376.3	9,239.2	9,376.3	9,320.1	9,376.3	9,374.1	9,376.3	9,315.1	9,376.3	9,173.6	9,376.3	9,208.5	9,376.3	9,436.8	
Number of Specimens	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
RESULTS	FA	IL	PA	SS	PASS		PA	SS	FA	IL	PA	SS	FA	IL	FA	IL	PA	SS	
Minimum Acceptable Equiv. Sample Mean	9,1	76.9	9,1	76.9	9,1	76.9	9,1	76.9	9,1	76.9	9,1	76.9	9,176.9		9,1	76.9	9,1	76.9	
Minimum Acceptable Equiv. Sample Min	9,0	33.0	9,0	33.0	9,0	33.0	9,03	33.0	9,033.0		9,0	33.0	9,0	33.0	9,0	33.0	9,0	33.0	
MOD CV RESULTS	PASS wi	ith MOD	PASS wi	ith MOD	PASS w	ith MOD	PASS wi	th MOD	PASS wi	ith MOD	PASS w	ith MOD	PASS wi	ith MOD	PASS wi	th MOD	PASS wi	ith MOD	
Modified CV%	6.0	000	6.0	000	6.0	000	6.0	00	6.0	000	6.(000	6.0	000	6.0	000	6.0	000	
Minimum Acceptable Equiv. Sample Mean	8,7	76.9	8,776.9		8,776.9		8,776.9		8,776.9		8,776.9		8,776.9		8,776.9		8,776.9		
Minimum Acceptable Equiv. Sample Min	7,84	46.7	7,8	46.7	7,8	46.7	7,84	46.7	7,8	46.7	7,8	46.7	7,8	46.7	7,84	46.7	7,8	46.7	

Table 19. Statistical data analysis - Fiberglass G-10/FR4

6 Physical properties

This study evaluated the effects of UV-C exposure on the weight and color of different materials. The details of the test methods and the findings are discussed in this section.

6.1 Change in weight

Before and post the accelerated UV-C exposure, the weight of each test specimen was measured to an accuracy of 0.01g. The weight measurements recorded for the test specimens are summarized in Table 20 to Table 22. No significant weight change was observed for any material type when aged with UV-C exposure.

		Average Recorded Weight (g)														
		222 nm W	/avelength	า		2	53.4 nm \	Navelengt	280 nm Wavelength							
Plastic Type	4,380 mJ/cm ²		8,760 mJ/cm ²		14,600 mJ/cm ²		58,400 mJ/cm ²		116,800	116,800 mJ/cm ²		mJ/cm ²	109,500 mJ/cm ²			
	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)		
Kydex 6565	0.79	0.80	0.80	0.78	0.81	0.77	0.80	0.79	0.78	0.79	0.79	0.79	0.80	0.79		
Boltaron 9815E	0.91	0.89	0.90	0.90	0.90	0.91	0.89	0.89	0.91	0.92	0.91	0.88	0.92	0.88		
Lexan XHR	1.00	0.99	1.00	0.99	0.99	0.99	1.00	1.01	1.00	1.01	0.99	0.98	0.99	0.97		
Boltaron 9815N	0.88	0.84	0.86	0.86	0.84	0.85	0.86	0.84	0.84	0.85	0.86	0.86	0.87	0.85		
ULTEM [™] 9075	1.96	1.91	1.96	1.96	-	-	1.96	1.93	1.98	1.93	1.95	1.95	1.98	1.99		
ULTEM [™] 9085	1.94	1.94	1.90	1.91	14	-	1.93	1.97	1.91	1.97	1.93	1.96	1.93	1.95		

Table 20. Change in weight - Plastics

Table 21	Change	in	weight -	Honey	vcomh
	Change	ш	weight -	TIONE	ycomb

			Average Recor	ded Weight (g)								
Honeycomb Type	222 nm; 1,0	095 mJ/cm ²	222 nm; 4,3	380 mJ/cm ²	222 nm; 8,	760 mJ/cm ²						
	Pre (g)	Pre (g) Post (g) Pre (g) Post (g)		Post (g)	Pre (g)	Post (g)						
Honeycomb Type A (H1)	96.02 96.06		95.24	95.24 95.31		95.30						
		Average Recorded Weight (g)										
Hanay camb Type	253.4 nm: 14	1.600 mJ/cm ²	253.4 nm: 58	3.400 mJ/cm ²	253.4 nm: 116.800 mJ/cm ²							
нопеусопь туре												
	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)						
Honeycomb Type A (H1)	94.86	94.95	94.45	94.45 94.46		95.23						
			Average Recor	ded Weight (g)								
Honeycomb Type	280 nm; 13,6	687.5 mJ/cm ²	280 nm; 54,	750 mJ/cm ²	280 nm; 109,500 mJ/cm ²							
	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)						
Honeycomb Type A (H1)	94.67 94.67		94.90	95.00	95.44	95.54						

			Average Recor	ded Weight (g)			
Material Type	222 nm; 1,0	095 mJ/cm ²	222 nm; 4,3	380 mJ/cm ²	222 nm; 8,	760 mJ/cm ²	
	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)	
Fiberglass G-10/FR4 (FG1)	6.27	6.25	6.24	6.23	6.24	6.22	
			Average Recor	ded Weight (g)			
Material Type	253.4 nm; 14	1,600 mJ/cm ²	253.4 nm; 58	3,400 mJ/cm ²	253.4 nm; 116,800 mJ/cm ²		
	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)	
Fiberglass G-10/FR4 (FG1)	6.27	6.26	6.27	6.22	6.26	6.25	
		•			•		
			Average Recor	ded Weight (g)			
Material Type	280 nm; 13,6	587.5 mJ/cm ²	280 nm; 54,	,750 mJ/cm ²	280 nm; 109,500 mJ/cm ²		
	Pre (g)	Post (g)	Pre (g)	Post (g)	Pre (g)	Post (g)	
Fiberglass G-10/FR4 (FG1)	6.25	6.23	6.25	6.25	6.26	6.24	

Table 22. Change in weight - Fiberglass

6.2 Change in color

This section presents the effects of UV-C on the appearance of the plastics, honeycomb, and fiberglass materials tested. Post UV-C exposure, test specimens were qualitatively assessed for any color change when compared to pristine specimens. Table 23 and Table 24 summarize the qualitative color change observed in the six plastic material types and honeycomb and fiberglass materials, respectively.

Table 23. Qualitative color change summary – Plastics

	Change in Color Compared to Pristine Specimens										
Wavelength Configuration	Dosage (mJ/cm²)	Kydex 6565	Boltaron 9815E	Lexan XHR	Boltaron 9815N	ULTEM [™] 9075	ULTEM [™] 9085				
222 nm	4,380										
	8,760										
	14,600					N/A	N/A				
253.4 nm	58,400										
	116,800										
280 mm	54,750										
280 nm -	109,500										

No Color Change

Changes in Color

Wavelength Configuration	Dosage (mJ/cm²)	Honeycomb	Fiberglass G-10/FR4 (FG1)
	1,095		
222 nm	4,380		
	8,760		
	14,600		
253.4 nm	58,400		
	116,800		
	13,687.5		2
280 nm	54,750		
	109,500		

Table 24. Qualitative color change summary – Honeycomb and Fiberglass

No Color Change

Changes in Color

The qualitative assessment results showed that the accelerated UV-C aging tests cause discoloration in most materials considered in this study. The degree of discoloration varied based on the material type and the UV-C cumulative dosage. For Kydex 6565 at 222 nm - 4,380 mJ/cm² configuration, the color of the specimens turned to a slight yellowish hue from its original appearance and changed to darker yellow with the 8,760 mJ/cm² configuration. With the 253.4 nm wavelength configuration, Kydex 6565 specimens showed no change in color with the first dosage, and the discoloration effects were observed with the second and third dosage configurations. With the 280 nm dosage configuration, Kydex 6565 showed no change in color. Figure 28 to Figure 36 compare discoloration between pristine and UV-C aged specimens under various wavelength and dosage configurations.

280 nm; 54,750 mJ/cm²

280 nm; 109,500 mJ/cm² Figure 29. Qualitative comparison of the change in color – Boltaron 9815E

Figure 30. Qualitative comparison of the change in color – Lexan XHR shade 1

Reference Specimen

253.4 nm; 14,600 mJ/cm²

280 nm; 54,750 mJ/cm²

253.4 nm; 58,400 mJ/cm²

253.4 nm; 116,800 mJ/cm²

280 nm; 109,500 mJ/cm²

Figure 31. Qualitative comparison of the change in color – Lexan XHR shade 2

Figure 52. Quantative comparison of the change in color – Boltaron 98151

Figure 33. Qualitative comparison of the change in color – ULTEMTM 9075

Figure 35. Qualitative comparison of the change in color – Honeycomb type A

Figure 36. Qualitative comparison of the change in color – Fiberglass G-10/FR4

7 Conclusions

This study evaluated the long-term effects of UV-C irradiation on typical aircraft interior materials. The selected aircraft interior materials include six different plastics, one honeycomb, and one fiberglass material. Three different UV-C wavelength configurations were chosen with multiple cumulative dosages per wavelength configuration. The wavelength configurations selected for this study were 222 nm, 253.4 nm, and 280 nm. The virus inactivation treatment dose for each wavelength configuration was determined based on the literature review. Using the single treatment dose as the baseline, cumulative dosages were computed for accelerated UV-C aging tests equal to exposures of one time per day for one, four, and eight years. Test specimens were subjected to accelerated UV-C exposure and were evaluated for physical and mechanical properties. Plastic specimens were tested for tensile properties, the honeycomb was tested for flexure properties, and the fiberglass for short-beam strength properties.

Six different plastic materials, pristine and UV-C aged, were tested under uniaxial tensile loading conditions following the ASTM D638 test standard. Table 25 presents the percentage difference in average yield stress of UV-C aged specimens compared to pristine specimens. Kydex 6565 at 222 nm wavelength and a cumulative dose of 8,760 mJ/cm² showed a 10.39% reduction in average yield stress compared to its pristine counterparts.

	Percentage Difference Compared to Pristine Specimens – Yield Stress (Avg.)											
Wavelength Configuration	Cumulative Time (years) - One dose/day	Cumulative Dosage (mJ/cm²)	Kydex 6565	Boltaron 9815E	Lexan XHR	Boltaron 9815N	Ultem 9075	Ultem 9085				
Avg. Pristine (psi)	N/A	N/A	7548.1	5521.3	10328.4	6636.3	11776.0	10496.1				
222	Four	4,380	-4.12	2.16	-4.24	-8.39	4.59	3.69				
222 nm	Eight	8,760	-10.39	1.88	1.25	-9.61	3.87	3.62				
	One	14,600	-2.61	2.45	2.10	-3.97	N/A	N/A				
253.4 nm	Four	58,400	-5.53	4.06	0.80	3.46	4.65	3.29				
	Eight	116,800	-5.04	5.54	1.52	-2.15	4.27	6.01				
280 nm -	Four	54,750	-3.90	2.63	1.72	-1.71	4.12	4.39				
	Eight	109,500	-4.51	3.26	-1.09	-1.90	4.05	4.37				

Table 25. Results summary - Plastics (yield stress)

Percentage difference compared to pristine specimens

Table 26 presents the percentage difference in average ultimate tensile strength of UV-C aged specimens compared to pristine specimens.

Perce	Percentage Difference Compared to Pristine Specimens – Ultimate Tensile Strength (Avg.)											
Wavelength Configuration	Cumulative Time (years) - One dose/day	Cumulative Dosage (mJ/cm²)	Kydex 6565	Boltaron 9815E	Lexan XHR	Boltaron 9815N	Ultem 9075	Ultem 9085				
Avg. Pristine (psi)	N/A	N/A	6680.5	5180.4	10147.8	5263.5	9722.5	8748.4				
333 mm	Four	4,380	-16.49	-9.25	-10.47	-9.66	9.27	4.59				
222 nm	Eight	8,760	-16.55	-6.24	0.04	-12.33	12.22	9.79				
	One	14,600	-4.36	-3.14	-3.72	-2.49	N/A	N/A				
253.4 nm	Four	58,400	-13.28	-6.79	0.70	-2.07	-1.65	5.42				
	Eight	116,800	-19.20	-6.67	-2.18	-7.16	11.11	8.74				
300	Four	54,750	-9.12	0.26	-5.21	-6.42	7.78	4.26				
280 nm -	Eight	109,500	-9.40	-0.37	-7.09	-6.18	12.89	8.62				

Table 26. Results summary – Plastics (ultimate tensile strength)

Percentage difference compared to pristine specimens

< 5% < between 5% to 10% > 10%

Table 27 presents the percentage difference in mechanical properties between pristine and UV-C aged specimens for honeycomb and fiberglass materials. For honeycomb material, specimens subjected to 253.4 nm - 14,600 mJ/cm² dosage presented a 9.66% reduction in maximum load compared to pristine specimens. However, the 4-year and 8-year configurations resulted in less than 5% reduction when compared to pristine specimens. Due to the limited sample count, further conclusions could not be made on this variation. Additional research should be performed to better understand this behavior. For fiberglass material, all three wavelength and cumulative dosage configurations showed less than a 5% reduction in short-beam strength compared to pristine specimens.

	Percentage Difference Compared to Pristine Specimens										
Wavelength Configuration	Cumulative Time (years) - One dose/day	Cumulative Dosage (mJ/cm²)	Honeycomb – Maximum Load (Ibs.)	Fiberglass – Short Beam Strength (psi)							
Avg. Pristine	N/A	N/A	152.4	9250.1							
	One	1,095	-2.45	-0.91							
222 nm	Four	4,380	-2.75	-0.16							
	Eight	8,760	-0.22	-0.75							
	One	14,600	-9.66	-0.56							
253.4 nm	Four	58,400	-1.28	-0.80							
	Eight	116,800	-0.24	-0.23							
	One	13,687.5	5.52	-2.21							
280 nm	Four	54,750	-3.47	-0.91							
	Eight	109,500	-0.74	-0.26							

Table 27. Results summary – Honeycomb & Fiberglass

Percentage difference compared to pristine specimens

< between 5% to 10%

> 10%

8 References

Aero HygenX. (2022, July). RAY. Retrieved from https://www.aerohygenx.com/products/ray

- AquiSense. (2022, July). *AquiSense UV-C LED Technology*. Retrieved from https://aquisense.com/uvc-led-technology/
- ASTM International. (2014). Standard test method for tensile properties of plastics. (ASTM D638-22). doi:10.1520/D0638-22
- ASTM International. (2016). Standard test method for short-beam strength of polymer matrix composite materials and their laminates. (ASTM D2344/D2344M-16). doi:10.1520/D2344_D2344M-16
- ASTM International. (2020). Standard test method for facesheet properties of sandwich constructions by long-beam flexure. (ASTM D7249/D7249M-20). doi:10.1520/D7249_D7249M-20
- Boeing. (2022, July). Safety of 222 nm band-pass filtered irradiation: A review and analysis of current data.
- CDC. (2022, December). *Airline Guidance*. Retrieved from https://www.cdc.gov/quarantine/air/index.html?CDC_AA_refVal=https%3A%2F%2Fw ww.cdc.gov%2Fquarantine%2Fair%2Fmanaging-sick-travelers%2Fncov-airlines.html
- FAA. (2020, November 4). *Special airworthiness information bulletin*. Retrieved from https://www.icao.int/safety/CAPSCA/COVID19Docs/NM-20-17.pdf
- Gerchman, Y., Mamane, H., Friedman, N., & Mandelboim, M. (2020). UV-LED disinfection of coronavirus: Wavelength effect. *Journal of Photochemistry and Photobiology B: Biology*.
- Gilchrist, A., & Nobbs, J. (2000, January 21). Colorimetry, Theory. U.K. : University of Leeds.
- Honeywell. (2022, July). *Honeywell UV Treatment System*. Retrieved from https://aerospace.honeywell.com/us/en/products-and-services/product/hardware-andsystems/cabin/uv-treatment-system
- Honeywell Aerospace. (2022, July). Retrieved from https://aerospace.honeywell.com/
- Inagaki, H., Saito, A., Sugiyama, H., Okabayashi, T., & Fujimoto, S. (2020). Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. *Emerging Microbes & Infections*.

Retrieved from National Library of Medicine: https://pubmed.ncbi.nlm.nih.gov/32673522/

- IUVA. (2022, July). Advice (i.e., tips) for the selection and operation of equipment for the UV disinfection of air and surfaces. Retrieved from https://iuva.org/resources/covid-19/Advice-for-the-selection-and-operation-of-equipment-for-the-UV-disinfection-of-airand-surfaces.pdf
- Kampf, G. (2020, February 1). Potential role of inanimate surfaces for the spread of coronaviuses and their inactivation with disinfectant agents. *Infection Prevention in Practice*.
- Kitagawa, H., Nomura, T. N., Nazmul, T., Keitaro, O., Shigemoto, N., Sakaguchi, T., & Ohge,
 H. (2020). Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. *American Journal of Infection Control*.
- Kitasato Research Center for Environmental Science. (2019, September 11). Performance test for virus inactivation efficacy by UV irradiation. Sagamihara, Kanagawa, Japan.
- LightTech LightSources. (2022, July). 254 nm UV Lamps. Retrieved from https://www.lightsources.com/solutions/germicidal-uvc-lamps/uv-germicidal-lamps/low-pressure-mercurylamps/254-nm-uv-lamps/
- Olivares, G., Gomez, L., Bhasin, A., Luis, C. D., Kona Ravi, A., & Maichan, T. (2021). *Effect of disinfectants on aircraft seating materials*. FAA.
- Panait, C. I. (2020, March 30). Guidance on aircraft cleaning and disinfection in relation to the COVID-19 pandemic.
- Polymer matrix composites: guidelines for characterization of structural materials. (2012). In *Composite Material Handbook (CMH-17)* (Vol. 1). SAE international.
- Rayonet. (2022, July). *The Southern New England Ultraviolet Co*. Retrieved from https://rayonet.org/reactors.php
- S-9 cabin safety provisions committee. (n.d.). Retrieved from https://www.sae.org/works/committeeHome.do?comtID=TEAS9
- *S-9 Cabin Safety Provisions Committee*. (n.d.). Retrieved from https://www.sae.org/works/committeeHome.do?comtID=TEAS9

SAE aircraft seat. (n.d.). Retrieved from

https://www.sae.org/works/committeeHome.do?comtID=TEASEAT

- SAE aircraft SEAT committee. (n.d.). Retrieved from https://www.sae.org/works/committeeHome.do?comtID=TEASEAT.
- U.S. Food & Drug Administration. (2022, July). UV lights and lamps: Ultraviolet-C radiation, disinfection, and coronavirus.

Ushio. (2022, July). Ushio America, Inc. Retrieved from https://www.ushio.com/

A Specimen dimensions - Plastics

Specimen	LO	wo	W1	W2	W3	Wavg	T1	T2	T3	Tavg
FAA-T-P1-D6-01	2.5045	0.3750	0.1255	0.1255	0.1260	0.1257	0.0465	0.0465	0.0470	0.0467
FAA-T-P1-D6-02	2.5060	0.3745	0.1260	0.1255	0.1250	0.1255	0.0465	0.0470	0.0470	0.0468
FAA-T-P1-D6-03	2.5045	0.3760	0.1260	0.1255	0.1255	0.1257	0.0470	0.0475	0.0475	0.0473
FAA-T-P1-D7-01	2.5040	0.3750	0.1265	0.1260	0.1255	0.1260	0.0510	0.0500	0.0500	0.0503
FAA-T-P1-D7-02	2.5040	0.3750	0.1255	0.1250	0.1255	0.1253	0.0475	0.0470	0.0470	0.0472
FAA-T-P1-D7-03	2.5035	0.3755	0.1260	0.1260	0.1260	0.1260	0.0480	0.0480	0.0480	0.0480
FAA-T-P1-D8-01	2.5040	0.3775	0.1255	0.1255	0.1255	0.1255	0.0475	0.0470	0.0470	0.0472
FAA-T-P1-D8-02	2.5035	0.3750	0.1260	0.1260	0.1265	0.1262	0.0490	0.0480	0.0480	0.0483
FAA-T-P1-D8-03	2.5020	0.3765	0.1240	0.1240	0.1240	0.1240	0.0485	0.0480	0.0480	0.0482
FAA-T-P1-D9-01	2.5035	0.3750	0.1270	0.1260	0.1260	0.1263	0.0475	0.0480	0.0485	0.0480
FAA-T-P1-D9-02	2.5030	0.3740	0.1260	0.1260	0.1255	0.1258	0.0475	0.0475	0.0475	0.0475
FAA-T-P1-D9-03	2.5035	0.3755	0.1260	0.1255	0.1255	0.1257	0.0470	0.0475	0.0475	0.0473
FAA-T-P1-D10-01	2.5030	0.3760	0.1265	0.1260	0.1265	0.1263	0.0475	0.0475	0.0475	0.0475
FAA-T-P1-D10-02	2.5050	0.3770	0.1255	0.1260	0.1270	0.1262	0.0475	0.0470	0.0475	0.0473
FAA-T-P1-D10-03	2.5030	0.3745	0.1270	0.1265	0.1265	0.1267	0.0475	0.0480	0.0475	0.0477
FAA-T-P1-D11-01	2.5035	0.3755	0.1260	0.1260	0.1260	0.1260	0.0475	0.0475	0.0475	0.0475
FAA-T-P1-D11-02	2.5020	0.3750	0.1270	0.1265	0.1265	0.1267	0.0485	0.0490	0.0480	0.0485
FAA-T-P1-D11-03	2.5040	0.3750	0.1265	0.1260	0.1260	0.1262	0.0470	0.0480	0.0480	0.0477
FAA-T-P1-D12-01	2.5025	0.3750	0.1260	0.1260	0.1260	0.1260	0.0470	0.0475	0.0470	0.0472
FAA-T-P1-D12-02	2.5035	0.3750	0.1260	0.1265	0.1260	0.1262	0.0475	0.0485	0.0475	0.0478
FAA-T-P1-D12-03	2.5020	0.3750	0.1265	0.1265	0.1260	0.1263	0.0480	0.0485	0.0485	0.0483

Table A- 1. Specimen dimensions for Kydex 6565

Table A- 2. Specimen dimensions for Boltaron 9815E

Specimen	LO	wo	W1	W2	W3	Wavg	T1	T2	T3	Tavg
FAA-T-P2-D6-01	2.5035	0.3760	0.1255	0.1255	0.1250	0.1253	0.0500	0.0510	0.0500	0.0503
FAA-T-P2-D6-02	2.5030	0.3750	0.1260	0.1250	0.1250	0.1253	0.0510	0.0510	0.0515	0.0512
FAA-T-P2-D6-03	2.5045	0.3755	0.1255	0.1250	0.1255	0.1253	0.0510	0.0505	0.0510	0.0508
FAA-T-P2-D7-01	2.5030	0.3750	0.1260	0.1255	0.1260	0.1258	0.0500	0.0500	0.0500	0.0500
FAA-T-P2-D7-02	2.5040	0.3765	0.1255	0.1260	0.1250	0.1255	0.0500	0.0505	0.0505	0.0503
FAA-T-P2-D7-03	2.5075	0.3755	0.1250	0.1260	0.1260	0.1257	0.0500	0.0500	0.0505	0.0502
FAA-T-P2-D8-01	2.5000	0.3770	0.1235	0.1230	0.1235	0.1233	0.0550	0.0545	0.0540	0.0545
FAA-T-P2-D8-02	2.5025	0.3755	0.1255	0.1255	0.1260	0.1257	0.0500	0.0505	0.0505	0.0503
FAA-T-P2-D8-03	2.5040	0.3760	0.1250	0.1250	0.1255	0.1252	0.0500	0.0505	0.0500	0.0502
FAA-T-P2-D9-01	2.5040	0.3750	0.1260	0.1260	0.1260	0.1260	0.0505	0.0505	0.0500	0.0503
FAA-T-P2-D9-02	2.5030	0.3750	0.1265	0.1260	0.1260	0.1262	0.0510	0.0510	0.0510	0.0510
FAA-T-P2-D9-03	2.5035	0.3750	0.1260	0.1255	0.1260	0.1258	0.0505	0.0505	0.0500	0.0503
FAA-T-P2-D10-01	2.5035	0.3755	0.1260	0.1250	0.1250	0.1253	0.0500	0.0505	0.0500	0.0502
FAA-T-P2-D10-02	2.5035	0.3750	0.1255	0.1255	0.1255	0.1255	0.0500	0.0505	0.0500	0.0502
FAA-T-P2-D10-03	2.5030	0.3755	0.1260	0.1255	0.1260	0.1258	0.0520	0.0515	0.0505	0.0513
FAA-T-P2-D11-01	2.5065	0.3750	0.1250	0.1260	0.1255	0.1255	0.0505	0.0515	0.0510	0.0510
FAA-T-P2-D11-02	2.5030	0.3750	0.1260	0.1255	0.1255	0.1257	0.0510	0.0500	0.0500	0.0503
FAA-T-P2-D11-03	2.5030	0.3755	0.1260	0.1255	0.1260	0.1258	0.0510	0.0510	0.0510	0.0510
FAA-T-P2-D12-01	2.5025	0.3750	0.1260	0.1255	0.1260	0.1258	0.0510	0.0520	0.0510	0.0513
FAA-T-P2-D12-02	2.5025	0.3750	0.1255	0.1250	0.1255	0.1253	0.0505	0.0505	0.0500	0.0503
FAA-T-P2-D12-03	2.5025	0.3750	0.1260	0.1260	0.1260	0.1260	0.0500	0.0500	0.0505	0.0502

Specimen	LO	wo	W1	W2	W3	Wavg	T1	T2	T3	Tavg
FAA-T-P3-D6-01	2.5035	0.3775	0.1280	0.1280	0.1280	0.1280	0.0630	0.0630	0.0625	0.0628
FAA-T-P3-D6-02	2.5025	0.3755	0.1260	0.1260	0.1270	0.1263	0.0620	0.0625	0.0620	0.0622
FAA-T-P3-D6-03	2.5020	0.3750	0.1260	0.1265	0.1270	0.1265	0.0620	0.0625	0.0625	0.0623
FAA-T-P3-D7-01	2.5035	0.3750	0.1270	0.1260	0.1260	0.1263	0.0640	0.0640	0.0635	0.0638
FAA-T-P3-D7-02	2.5025	0.3750	0.1270	0.1270	0.1280	0.1273	0.0635	0.0635	0.0630	0.0633
FAA-T-P3-D7-03	2.5020	0.3750	0.1280	0.1280	0.1280	0.1280	0.0625	0.0630	0.0625	0.0627
FAA-T-P3-D8-01	2.5030	0.3750	0.1280	0.1280	0.1275	0.1278	0.0635	0.0630	0.0630	0.0632
FAA-T-P3-D8-02	2.5020	0.3750	0.1280	0.1280	0.1280	0.1280	0.0635	0.0635	0.0635	0.0635
FAA-T-P3-D8-03	2.5035	0.3755	0.1270	0.1270	0.1270	0.1270	0.0625	0.0630	0.0625	0.0627
FAA-T-P3-D9-01	2.5035	0.3750	0.1270	0.1270	0.1270	0.1270	0.0635	0.0635	0.0635	0.0635
FAA-T-P3-D9-02	2.5030	0.3745	0.1280	0.1280	0.1280	0.1280	0.0640	0.0635	0.0635	0.0637
FAA-T-P3-D9-03	2.5025	0.3750	0.1270	0.1265	0.1265	0.1267	0.0630	0.0630	0.0630	0.0630
FAA-T-P3-D10-01	2.5025	0.3755	0.1285	0.1280	0.1280	0.1282	0.0640	0.0640	0.0635	0.0638
FAA-T-P3-D10-02	2.5030	0.3750	0.1270	0.1265	0.1280	0.1272	0.0640	0.0640	0.0640	0.0640
FAA-T-P3-D10-03	2.5030	0.3755	0.1280	0.1280	0.1285	0.1282	0.0625	0.0630	0.0630	0.0628
FAA-T-P3-D11-01	2.5030	0.3755	0.1285	0.1280	0.1285	0.1283	0.0635	0.0630	0.0640	0.0635
FAA-T-P3-D11-02	2.5035	0.3755	0.1285	0.1280	0.1285	0.1283	0.0630	0.0630	0.0630	0.0630
FAA-T-P3-D11-03	2.5025	0.3750	0.1285	0.1285	0.1290	0.1287	0.0640	0.0650	0.0650	0.0647
FAA-T-P3-D12-01	2.5015	0.3750	0.1280	0.1280	0.1280	0.1280	0.0630	0.0630	0.0630	0.0630
FAA-T-P3-D12-02	2.5025	0.3755	0.1275	0.1270	0.1270	0.1272	0.0630	0.0625	0.0625	0.0627
FAA-T-P3-D12-03	2.5050	0.3765	0.1265	0.1270	0.1265	0.1267	0.0615	0.0615	0.0615	0.0615

Table A- 3. Specimen dimensions for Lexan XHR

Table A- 4. Specimen dimensions for Boltaron 9815N

Specimen	LO	wo	W1	W2	W3	Wavg	T1	T2	T3	Tavg
FAA-T-P4-D6-01	2.4795	0.3755	0.1220	0.1225	0.1220	0.1222	0.0485	0.0480	0.0480	0.0482
FAA-T-P4-D6-02	2.4840	0.3740	0.1240	0.1235	0.1230	0.1235	0.0485	0.0480	0.0480	0.0482
FAA-T-P4-D6-03	2.5205	0.3750	0.1255	0.1250	0.1255	0.1253	0.0490	0.0485	0.0485	0.0487
FAA-T-P4-D7-01	2.5335	0.3730	0.1240	0.1235	0.1230	0.1235	0.0490	0.0485	0.0480	0.0485
FAA-T-P4-D7-02	2.4755	0.3780	0.1230	0.1235	0.1240	0.1235	0.0480	0.0485	0.0480	0.0482
FAA-T-P4-D7-03	2.4790	0.3760	0.1215	0.1210	0.1215	0.1213	0.0485	0.0485	0.0485	0.0485
FAA-T-P4-D8-01	2.4770	0.3745	0.1230	0.1230	0.1230	0.1230	0.0480	0.0485	0.0485	0.0483
FAA-T-P4-D8-02	2.4805	0.3740	0.1245	0.1240	0.1235	0.1240	0.0485	0.0480	0.0480	0.0482
FAA-T-P4-D8-03	2.4770	0.3760	0.1220	0.1230	0.1235	0.1228	0.0490	0.0490	0.0490	0.0490
FAA-T-P4-D9-01	2.5030	0.3775	0.1285	0.1280	0.1280	0.1282	0.0500	0.0505	0.0500	0.0502
FAA-T-P4-D9-02	2.5020	0.3775	0.1280	0.1270	0.1280	0.1277	0.0510	0.0505	0.0505	0.0507
FAA-T-P4-D9-03	2.5215	0.3760	0.1235	0.1240	0.1245	0.1240	0.0490	0.0490	0.0490	0.0490
FAA-T-P4-D10-01	2.4790	0.3760	0.1245	0.1245	0.1250	0.1247	0.0485	0.0485	0.0490	0.0487
FAA-T-P4-D10-02	2.5030	0.3780	0.1300	0.1295	0.1305	0.1300	0.0495	0.0495	0.0490	0.0493
FAA-T-P4-D10-03	2.5020	0.3775	0.1280	0.1270	0.1275	0.1275	0.0505	0.0505	0.0500	0.0503
FAA-T-P4-D11-01	2.5035	0.3780	0.1305	0.1300	0.1310	0.1305	0.0505	0.0500	0.0505	0.0503
FAA-T-P4-D11-02	2.4765	0.3745	0.1230	0.1220	0.1220	0.1223	0.0490	0.0485	0.0490	0.0488
FAA-T-P4-D11-03	2.5280	0.3760	0.1195	0.1200	0.1205	0.1200	0.0490	0.0490	0.0490	0.0490
FAA-T-P4-D12-01	2.4780	0.3735	0.1280	0.1280	0.1280	0.1280	0.0490	0.0490	0.0485	0.0488
FAA-T-P4-D12-02	2.4815	0.3760	0.1230	0.1230	0.1235	0.1232	0.0485	0.0485	0.0480	0.0483
FAA-T-P4-D12-03	2.5020	0.3780	0.1295	0.1295	0.1295	0.1295	0.0500	0.0500	0.0495	0.0498

Specimen	LO	wo	W1	W2	W3	Wavg	T1	T2	T3	Tavg
FAA-T-P5-D7-01	2.5085	0.3825	0.1220	0.1195	0.1220	0.1212	0.1195	0.1205	0.1200	0.1200
FAA-T-P5-D7-02	2.5095	0.3820	0.1240	0.1195	0.1205	0.1213	0.1175	0.1200	0.1195	0.1190
FAA-T-P5-D7-03	2.5095	0.3820	0.1230	0.1195	0.1210	0.1212	0.1205	0.1205	0.1200	0.1203
FAA-T-P5-D8-01	2.5090	0.3835	0.1215	0.1215	0.1220	0.1217	0.1180	0.1185	0.1190	0.1185
FAA-T-P5-D8-02	2.5085	0.3835	0.1260	0.1205	0.1205	0.1223	0.1205	0.1200	0.1205	0.1203
FAA-T-P5-D8-03	2.5085	0.3825	0.1230	0.1215	0.1230	0.1225	0.1195	0.1190	0.1190	0.1192
FAA-T-P5-D9-01	2.5095	0.3835	0.1245	0.1220	0.1230	0.1232	0.1185	0.1185	0.1185	0.1185
FAA-T-P5-D9-02	2.5095	0.3825	0.1205	0.1195	0.1210	0.1203	0.1170	0.1170	0.1170	0.1170
FAA-T-P5-D9-03	2.5075	0.3820	0.1250	0.1205	0.1200	0.1218	0.1165	0.1165	0.1180	0.1170
FAA-T-P5-D10-01	2.5115	0.3835	0.1220	0.1210	0.1210	0.1213	0.1175	0.1180	0.1170	0.1175
FAA-T-P5-D10-02	2.5075	0.3825	0.1245	0.1220	0.1240	0.1235	0.1175	0.1175	0.1180	0.1177
FAA-T-P5-D10-03	2.5105	0.3835	0.1250	0.1225	0.1240	0.1238	0.1195	0.1190	0.1190	0.1192
FAA-T-P5-D11-01	2.5095	0.3835	0.1250	0.1205	0.1210	0.1222	0.1165	0.1170	0.1165	0.1167
FAA-T-P5-D11-02	2.5090	0.3830	0.1255	0.1205	0.1230	0.1230	0.1205	0.1210	0.1195	0.1203
FAA-T-P5-D11-03	2.5105	0.3805	0.1250	0.1220	0.1220	0.1230	0.1180	0.1180	0.1180	0.1180
FAA-T-P5-D12-01	2.5100	0.3805	0.1255	0.1220	0.1230	0.1235	0.1185	0.1185	0.1185	0.1185
FAA-T-P5-D12-02	2.5085	0.3795	0.1200	0.1195	0.1220	0.1205	0.1175	0.1185	0.1175	0.1178
FAA-T-P5-D12-03	2.5100	0.3805	0.1295	0.1215	0.1205	0.1238	0.1215	0.1205	0.1205	0.1208

Table A- 5. Specimen dimensions for ULTEMTM 9075

Table A- 6. Specimen dimensions for ULTEMTM 9085

Specimen	LO	wo	W1	W2	W 3	Wavg	T1	T2	T3	Tavg
FAA-T-P6-D7-01	2.5100	0.3835	0.1225	0.1215	0.1220	0.1220	0.1205	0.1210	0.1205	0.1207
FAA-T-P6-D7-02	2.5090	0.3825	0.1240	0.1205	0.1215	0.1220	0.1165	0.1160	0.1155	0.1160
FAA-T-P6-D7-03	2.5080	0.3820	0.1230	0.1205	0.1215	0.1217	0.1180	0.1180	0.1175	0.1178
FAA-T-P6-D8-01	2.5095	0.3825	0.1210	0.1205	0.1215	0.1210	0.1150	0.1170	0.1160	0.1160
FAA-T-P6-D8-02	2.5095	0.3825	0.1215	0.1205	0.1220	0.1213	0.1165	0.1165	0.1165	0.1165
FAA-T-P6-D8-03	2.5090	0.3825	0.1235	0.1210	0.1220	0.1222	0.1145	0.1165	0.1160	0.1157
FAA-T-P6-D9-01	2.5095	0.3815	0.1230	0.1225	0.1255	0.1237	0.1200	0.1185	0.1180	0.1188
FAA-T-P6-D9-02	2.5085	0.3830	0.1240	0.1215	0.1240	0.1232	0.1170	0.1185	0.1165	0.1173
FAA-T-P6-D9-03	2.5095	0.3815	0.1225	0.1210	0.1225	0.1220	0.1150	0.1165	0.1160	0.1158
FAA-T-P6-D10-01	2.5090	0.3835	0.1225	0.1200	0.1220	0.1215	0.1160	0.1165	0.1165	0.1163
FAA-T-P6-D10-02	2.5100	0.3835	0.1225	0.1205	0.1220	0.1217	0.1145	0.1150	0.1150	0.1148
FAA-T-P6-D10-03	2.5110	0.3835	0.1240	0.1205	0.1220	0.1222	0.1215	0.1215	0.1205	0.1212
FAA-T-P6-D11-01	2.5120	0.3835	0.1230	0.1215	0.1230	0.1225	0.1200	0.1205	0.1210	0.1205
FAA-T-P6-D11-02	2.5085	0.3825	0.1220	0.1200	0.1220	0.1213	0.1170	0.1175	0.1165	0.1170
FAA-T-P6-D11-03	2.5095	0.3835	0.1240	0.1215	0.1245	0.1233	0.1170	0.1175	0.1175	0.1173
FAA-T-P6-D12-01	2.5110	0.3835	0.1235	0.1230	0.1245	0.1237	0.1175	0.1165	0.1175	0.1172
FAA-T-P6-D12-02	2.5100	0.3835	0.1220	0.1200	0.1230	0.1217	0.1165	0.1165	0.1165	0.1165
FAA-T-P6-D12-03	2.5090	0.3805	0.1235	0.1210	0.1235	0.1227	0.1165	0.1165	0.1165	0.1165

B Specimen dimensions - Honeycomb

Specimen	LO	W1	W2	W3	Wavg	T1	T2	T3	Tavg
FAA-F-H1-D6-01	24.0000	3.0170	3.0175	3.0170	3.0172	0.4035	0.4045	0.4065	0.4048
FAA-F-H1-D6-02	24.0000	3.0195	3.0190	3.0260	3.0215	0.4150	0.4100	0.4120	0.4123
FAA-F-H1-D6-03	24.0000	3.0220	3.2250	3.0215	3.0895	0.4100	0.4155	0.4100	0.4118
FAA-F-H1-D6-04	24.0000	3.0120	3.0160	3.0220	3.0167	0.4075	0.4060	0.4100	0.4078
FAA-F-H1-D6-05	24.0000	3.0205	3.0205	3.0205	3.0205	0.4230	0.4150	0.4145	0.4175
FAA-F-H1-D7-01	24.0000	3.0190	3.0190	3.0180	3.0187	0.4120	0.4160	0.4145	0.4142
FAA-F-H1-D7-02	24.0000	3.0190	3.0190	3.0190	3.0190	0.4110	0.4200	0.4235	0.4182
FAA-F-H1-D7-03	24.0000	3.0120	3.0180	3.0150	3.0150	0.4085	0.4095	0.4065	0.4082
FAA-F-H1-D7-04	24.0000	3.0155	3.0160	3.0180	3.0165	0.4095	0.4120	0.4090	0.4102
FAA-F-H1-D7-05	24.0000	3.0200	3.0300	3.0300	3.0267	0.4070	0.4080	0.4045	0.4065
FAA-F-H1-D8-01	24.0000	3.0220	3.0205	3.0190	3.0205	0.4070	0.4065	0.4255	0.4130
FAA-F-H1-D8-02	24.0000	3.0200	3.0200	3.0215	3.0205	0.4035	0.4035	0.4110	0.4060
FAA-F-H1-D8-03	24.0000	3.0205	3.0205	3.0230	3.0213	0.4100	0.4205	0.4270	0.4192
FAA-F-H1-D8-04	24.0000	3.0220	3.0280	3.0205	3.0235	0.4085	0.4340	0.4075	0.4167
FAA-F-H1-D8-05	24.0000	3.0250	3.0210	3.0205	3.0222	0.4110	0.4145	0.4140	0.4132
FAA-F-H1-D9-01	24.0000	3.0225	3.0180	3.0180	3.0195	0.4150	0.4170	0.4145	0.4155
FAA-F-H1-D9-02	24.0000	3.0210	3.0230	3.0235	3.0225	0.4090	0.4105	0.4200	0.4132
FAA-F-H1-D9-03	24.0000	3.0295	3.0220	3.0230	3.0248	0.4045	0.4300	0.4285	0.4210
FAA-F-H1-D9-04	24.0000	3.0195	3.0190	3.0190	3.0192	0.4115	0.4335	0.4165	0.4205
FAA-F-H1-D9-05	24.0000	3.0180	3.0185	3.0195	3.0187	0.4090	0.4275	0.4245	0.4203
FAA-F-H1-D10-01	24.0000	3.0205	3.0210	3.0205	3.0207	0.4065	0.4045	0.4045	0.4052
FAA-F-H1-D10-02	24.0000	3.0235	3.0225	3.0220	3.0227	0.4105	0.4115	0.4100	0.4107
FAA-F-H1-D10-03	24.0000	3.0230	3.0215	3.0205	3.0217	0.4130	0.4050	0.4070	0.4083
FAA-F-H1-D10-04	24.0000	3.0185	3.0190	3.0200	3.0192	0.4070	0.4120	0.4120	0.4103
FAA-F-H1-D10-05	24.0000	3.0145	3.0155	3.0165	3.0155	0.4080	0.4100	0.4220	0.4133
FAA-F-H1-D11-01	24.0000	3.0150	3.0160	3.0165	3.0158	0.4075	0.4085	0.4065	0.4075
FAA-F-H1-D11-02	24.0000	3.0180	3.0185	3.0195	3.0187	0.4055	0.4065	0.4035	0.4052
FAA-F-H1-D11-03	24.0000	3.0215	3.0200	3.0230	3.0215	0.4070	0.4070	0.4050	0.4063
FAA-F-H1-D11-04	24.0000	3.0195	3.0215	3.0185	3.0198	0.4095	0.4120	0.4110	0.4108
FAA-F-H1-D11-05	24.0000	3.0065	3.0065	3.0060	3.0063	0.4035	0.4030	0.4030	0.4032
FAA-F-H1-D12-01	24.0000	3.0215	3.0225	3.0215	3.0218	0.4055	0.4080	0.4060	0.4065
FAA-F-H1-D12-02	24.0000	3.0205	3.0205	3.0250	3.0220	0.4110	0.4325	0.4415	0.4283
FAA-F-H1-D12-03	24.0000	3.0235	3.0230	3.0190	3.0218	0.4045	0.4150	0.4040	0.4078
FAA-F-H1-D12-04	24.0000	3.0240	3.0240	3.0175	3.0218	0.4075	0.4045	0.4175	0.4098
FAA-F-H1-D12-05	24.0000	3.0260	3.0200	3.0205	3.0222	0.4080	0.4130	0.4110	0.4107
FAA-F-H1-D13-01	24.0000	3.0190	3.0190	3.0195	3.0192	0.4090	0.4100	0.4085	0.4092
FAA-F-H1-D13-02	24.0000	3.0245	3.0190	3.0190	3.0208	0.4075	0.4090	0.4075	0.4080
FAA-F-H1-D13-03	24.0000	3.0190	3.0185	3.0195	3.0190	0.4095	0.4040	0.4070	0.4068
FAA-F-H1-D13-04	24.0000	3.0205	3.0280	3.0405	3.0297	0.4030	0.4040	0.4260	0.4110
FAA-F-H1-D13-05	24.0000	3.0190	3.0220	3.0225	3.0212	0.4030	0.4030	0.4025	0.4028
FAA-F-H1-D14-01	24.0000	3.0225	3.0230	3.0195	3.0217	0.4110	0.4110	0.4115	0.4112
FAA-F-H1-D14-02	24.0000	3.0220	3.0290	3.0165	3.0225	0.4120	0.4110	0.4110	0.4113
FAA-F-H1-D14-03	24.0000	3.0270	3.0295	3.0240	3.0268	0.4150	0.4120	0.4130	0.4133
FAA-F-H1-D14-04	24.0000	3.0185	3.0205	3.0235	3.0208	0.4075	0.4050	0.4040	0.4055
FAA-F-H1-D14-05	24.0000	3.0220	3.0220	3.0205	3.0215	0.4055	0.4070	0.4080	0.4068

Table B- 1. Specimen dimensions for Honeycomb type A

C Specimen dimensions - Fiberglass

Specimen	LO	W1	W2	W3	Wavg	T1	T2	T3	Tavg
FAA-S-FG1-D6-01	1.5070	0.5020	0.5020	0.5020	0.5020	0.2550	0.2550	0.2550	0.2550
FAA-S-FG1-D6-02	1.5075	0.5020	0.5015	0.5015	0.5017	0.2565	0.2560	0.2560	0.2562
FAA-S-FG1-D6-03	1.5070	0.5015	0.5015	0.5015	0.5015	0.2565	0.2565	0.2560	0.2563
FAA-S-FG1-D6-04	1.5090	0.5010	0.5010	0.5020	0.5013	0.2575	0.2575	0.2565	0.2572
FAA-S-FG1-D6-05	1.5075	0.5015	0.5010	0.5005	0.5010	0.2565	0.2565	0.2570	0.2567
FAA-S-FG1-D7-01	1.5105	0.5015	0.5015	0.5015	0.5015	0.2565	0.2565	0.2560	0.2563
FAA-S-FG1-D7-02	1.5080	0.5020	0.5015	0.5015	0.5017	0.2535	0.2535	0.2535	0.2535
FAA-S-FG1-D7-03	1.5075	0.5010	0.5015	0.5020	0.5015	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D7-04	1.5075	0.5015	0.5020	0.5020	0.5018	0.2530	0.2540	0.2560	0.2543
FAA-S-FG1-D7-05	1.5070	0.5020	0.5020	0.5015	0.5018	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D8-01	1.5075	0.5015	0.5010	0.5010	0.5012	0.2560	0.2560	0.2565	0.2562
FAA-S-FG1-D8-02	1.5075	0.5020	0.5020	0.5015	0.5018	0.2545	0.2545	0.2540	0.2543
FAA-S-FG1-D8-03	1.5070	0.5015	0.5010	0.5020	0.5015	0.2545	0.2545	0.2545	0.2545
FAA-S-FG1-D8-04	1.5075	0.5015	0.5020	0.5020	0.5018	0.2530	0.2535	0.2560	0.2542
FAA-S-FG1-D8-05	1.5075	0.5020	0.5010	0.5005	0.5012	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D9-01	1.5075	0.5015	0.5015	0.5015	0.5015	0.2545	0.2545	0.2540	0.2543
FAA-S-FG1-D9-02	1.5075	0.5010	0.5010	0.5020	0.5013	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D9-03	1.5065	0.5015	0.5020	0.5020	0.5018	0.2550	0.2525	0.2530	0.2535
FAA-S-FG1-D9-04	1.5075	0.5015	0.5015	0.5015	0.5015	0.2555	0.2550	0.2550	0.2552
FAA-S-FG1-D9-05	1.5075	0.5010	0.5010	0.5015	0.5012	0.2550	0.2530	0.2525	0.2535
FAA-S-FG1-D10-01	1.5075	0.5020	0.5015	0.5015	0.5017	0.2530	0.2540	0.2555	0.2542
FAA-S-FG1-D10-02	1.5070	0.5015	0.5020	0.5020	0.5018	0.2530	0.2535	0.2560	0.2542
FAA-S-FG1-D10-03	1.5075	0.4995	0.5005	0.5010	0.5003	0.2550	0.2550	0.2550	0.2550
FAA-S-FG1-D10-04	1.5070	0.5020	0.5015	0.5015	0.5017	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D10-05	1.5085	0.5015	0.5020	0.5020	0.5018	0.2560	0.2555	0.2555	0.2557
FAA-S-FG1-D11-01	1.5080	0.5020	0.5020	0.5020	0.5020	0.2515	0.2525	0.2535	0.2525
FAA-S-FG1-D11-02	1.5075	0.5015	0.5015	0.5020	0.5017	0.2560	0.2565	0.2565	0.2563
FAA-S-FG1-D11-03	1.5075	0.5015	0.5020	0.5020	0.5018	0.2530	0.2535	0.2555	0.2540
FAA-S-FG1-D11-04	1.5070	0.5015	0.5020	0.5015	0.5017	0.2550	0.2550	0.2545	0.2548
FAA-S-FG1-D11-05	1.5070	0.5010	0.5015	0.5020	0.5015	0.2555	0.2555	0.2555	0.2555
FAA-S-FG1-D12-01	1.5100	0.5005	0.5010	0.5020	0.5012	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D12-02	1.5070	0.5020	0.5015	0.5010	0.5015	0.2565	0.2570	0.2570	0.2568
FAA-S-FG1-D12-03	1.5075	0.5020	0.5020	0.5015	0.5018	0.2545	0.2540	0.2540	0.2542
FAA-S-FG1-D12-04	1.5075	0.5010	0.5015	0.5020	0.5015	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D12-05	1.5075	0.5020	0.5015	0.5020	0.5018	0.2525	0.2535	0.2555	0.2538
FAA-S-FG1-D13-01	1.5075	0.5005	0.5010	0.5020	0.5012	0.2550	0.2545	0.2545	0.2547
FAA-S-FG1-D13-02	1.5075	0.5020	0.5015	0.5015	0.5017	0.2565	0.2575	0.2570	0.2570
FAA-S-FG1-D13-03	1.5070	0.5015	0.5010	0.5015	0.5013	0.2570	0.2575	0.2575	0.2573
FAA-S-FG1-D13-04	1.5070	0.5015	0.5015	0.5010	0.5013	0.2545	0.2530	0.2525	0.2533
FAA-S-FG1-D13-05	1.5075	0.5015	0.5015	0.5020	0.5017	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D14-01	1.5105	0.5015	0.5020	0.5020	0.5018	0.2565	0.2565	0.2565	0.2565
FAA-S-FG1-D14-02	1.5070	0.5015	0.5020	0.5020	0.5018	0.2550	0.2530	0.2530	0.2537
FAA-S-FG1-D14-03	1.5070	0.5010	0.5015	0.5020	0.5015	0.2530	0.2535	0.2555	0.2540
FAA-S-FG1-D14-04	1.5095	0.5015	0.5020	0.5020	0.5018	0.2545	0.2545	0.2540	0.2543
FAA-S-FG1-D14-05	1.5100	0.5015	0.5015	0.5020	0.5017	0.2560	0.2565	0.2565	0.2563

Table C- 1. Specimen dimensions for Fiberglass G-10/FR4
D Specimen pictures - Plastics

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P1-D6-01			•
FAA-T-P1-D6-02			
FAA-T-P1-D6-03			•
FAA-T-P1-D7-01			
FAA-T-P1-D7-02			

Table D- 1. Test photographs for FAA-T-P1-DX-0X (Kydex 6565)

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P1-D7-03			0-0-0
FAA-T-P1-D8-01			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FAA-T-P1-D8-02			
FAA-T-P1-D8-03			
FAA-T-P1-D9-01			
FAA-T-P1-D9-02			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P1-D9-03			
FAA-T-P1-D10-01		>	
FAA-T-P1-D10-02		>	
FAA-T-P1-D10-03			
FAA-T-P1-D11-01		57 et	3

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P1-D11-02		> <	>
FAA-T-P1-D11-03		>	
FAA-T-P1-D12-01		> <	
FAA-T-P1-D12-02		~	
FAA-T-P1-D12-03		>	

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P2-D6-01			
FAA-T-P2-D6-02			
FAA-T-P2-D6-03			• • •
FAA-T-P2-D7-01			
FAA-T-P2-D7-02			0 0
FAA-T-P2-D7-03			

Table D- 2. Test photographs for FAA-T-P2-DX-0X (Boltaron 9815E)

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P2-D6-01			
FAA-T-P2-D8-01			
FAA-T-P2-D8-02			
FAA-T-P2-D8-03			
FAA-T-P2-D9-01		>	
FAA-T-P2-D9-02		>	

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P2-D6-01			
FAA-T-P2-D9-03		>	
FAA-T-P2-D10-01			
FAA-T-P2-D10-02		>	
FAA-T-P2-D10-03		>	
FAA-T-P2-D11-01		>	

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P2-D6-01			
FAA-T-P2-D11-02		>	>
FAA-T-P2-D11-03			
FAA-T-P2-D12-01		>	2
FAA-T-P2-D12-02		*	
FAA-T-P2-D12-03		>	

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P3-D6-01		Image is unavailable.	
FAA-T-P3-D6-02			• • •
FAA-T-P3-D6-03			
FAA-T-P3-D7-01			
FAA-T-P3-D7-02			
FAA-T-P3-D7-03			0 0

Table D- 3. Test photographs for FAA-T-P3-DX-0X (Lexan XHR)

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P3-D8-01			
FAA-T-P3-D8-02			
FAA-T-P3-D8-03			
FAA-T-P3-D9-01		>	
FAA-T-P3-D9-02		>	> • • •

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P3-D9-03		>	
FAA-T-P3-D10-01		>	>
FAA-T-P3-D10-02		>	>
FAA-T-P3-D10-03		>	
FAA-T-P3-D11-01		>	> • • •

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P3-D11-02		>	> • • «
FAA-T-P3-D11-03		>	>
FAA-T-P3-D12-01		>	
FAA-T-P3-D12-02		>	> • •
FAA-T-P3-D12-03		>	> • <

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P4-D6-01			
FAA-T-P4-D6-02			0 0
FAA-T-P4-D6-03			• • •
FAA-T-P4-D7-01			
FAA-T-P4-D7-02			
FAA-T-P4-D7-03			

Table D- 4. Test photographs for FAA-T-P4-DX-0X (Boltaron 9815N)

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P4-D8-01			0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FAA-T-P4-D8-02			
FAA-T-P4-D8-03			
FAA-T-P4-D9-01		>	D O O O
FAA-T-P4-D9-02		3	

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P4-D9-03		>	
FAA-T-P4-D10-01		>	
FAA-T-P4-D10-02		>	
FAA-T-P4-D10-03		>	
FAA-T-P4-D11-01		>	2 • • • • •

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P4-D11-02		>	
FAA-T-P4-D11-03		0	63
FAA-T-P4-D12-01		> <	
FAA-T-P4-D12-02		>	
FAA-T-P4-D12-03		*	

Table D- 5. Test photographs for FAA-T-P5-DX-0X (ULTEMTM 9075)

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P5-D9-01			
FAA-T-P5-D9-02			0 0
FAA-T-P5-D9-03			
FAA-T-P5-D10-01			
FAA-T-P5-D10-02			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P5-D10-03			
FAA-T-P5-D11-01			0-0
FAA-T-P5-D11-02			
FAA-T-P5-D11-03			
FAA-T-P5-D12-01			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-T-P5-D12-02			
FAA-T-P5-D12-03			

Table D- 6. Test photographs for FAA-T-P6-DX-0X (ULTEMTM 9085)

Pre-Aging	Post-Aging/ Pre-Test	Post-Test
		0 0
·		0 0
		0 0
		0 0

Pre-Aging	Post-Aging/ Pre-Test	Post-Test
		0 0
		0 0
		0 0

Pre-Aging	Post-Aging/ Pre-Test	Post-Test
		0 0

E Specimen Pictures - Honeycomb

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D6-01			
FAA-F-H1-D6-02			
FAA-F-H1-D6-03			
FAA-F-H1-D6-04			
FAA-F-H1-D6-05			

Table E- 1. Test photographs for FAA-F-H1-DX-0X (Honeycomb type A)

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D7-01			
FAA-F-H1-D7-02			
FAA-F-H1-D7-03			
FAA-F-H1-D7-04			
FAA-F-H1-D7-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D8-01			
FAA-F-H1-D8-02			
FAA-F-H1-D8-03			
FAA-F-H1-D8-04			
FAA-F-H1-D8-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D10-01			
FAA-F-H1-D10-02			
FAA-F-H1-D10-03			
FAA-F-H1-D10-04			
FAA-F-H1-D10-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D11-01			
FAA-F-H1-D11-02			
FAA-F-H1-D11-03			
FAA-F-H1-D11-04			
FAA-F-H1-D11-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D12-01			
FAA-F-H1-D12-02			
FAA-F-H1-D12-03			
FAA-F-H1-D12-04			
FAA-F-H1-D12-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D13-01			
FAA-F-H1-D13-02			j.
FAA-F-H1-D13-03			
FAA-F-H1-D13-04			
FAA-F-H1-D13-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-F-H1-D14-01			
FAA-F-H1-D14-02			
FAA-F-H1-D14-03			
FAA-F-H1-D14-04			
FAA-F-H1-D14-05)

F Specimen Pictures - Fiberglass

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D6-01			
FAA-S-FG1-D6-02			And
FAA-S-FG1-D6-03			
FAA-S-FG1-D6-04			
FAA-S-FG1-D6-05			

Table F- 1. Test photographs for FAA-S-FG1-DX-0X (Fiberglass G-10/FR4)

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D7-01			
FAA-S-FG1-D7-02			
FAA-S-FG1-D7-03			
FAA-S-FG1-D7-04			
FAA-S-FG1-D7-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D8-01			
FAA-S-FG1-D8-02			
FAA-S-FG1-D8-03			
FAA-S-FG1-D8-04			
FAA-S-FG1-D8-05			
	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
-----------------	-----------	----------------------	---
FAA-S-FG1-D9-01			ALL
FAA-S-FG1-D9-02			
FAA-S-FG1-D9-03		-	-
FAA-S-FG1-D9-04			A design of the second s
FAA-S-FG1-D9-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D10-01			
FAA-S-FG1-D10-02			und, das
FAA-S-FG1-D10-03			
FAA-S-FG1-D10-04			
FAA-S-FG1-D10-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D11-01			
FAA-S-FG1-D11-02			
FAA-S-FG1-D11-03			
FAA-S-FG1-D11-04			
FAA-S-FG1-D11-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D12-01			
FAA-S-FG1-D12-02			
FAA-S-FG1-D12-03			
FAA-S-FG1-D12-04		Image is unavailable.	All and a second se
FAA-S-FG1-D12-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D13-01			
FAA-S-FG1-D13-02			
FAA-S-FG1-D13-03			
FAA-S-FG1-D13-04			
FAA-S-FG1-D13-05			

	Pre-Aging	Post-Aging/ Pre-Test	Post-Test
FAA-S-FG1-D14-01			
FAA-S-FG1-D14-02			
FAA-S-FG1-D14-03			
FAA-S-FG1-D14-04			
FAA-S-FG1-D14-05			